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Chapter One/Introduction to Compressible Flow 

 

1.1. Introduction 

In general flow can be subdivided into: 

i. Ideal and real flow. 

For ideal (inviscid) flow viscous effect is ignored. The momentum equations are 

Euler’s equations that derived in 1755 by Euler. 

For real (viscose) viscous effect is considered. The momentum equations are 

Navier-Stokes equations. 

ii. Steady and unsteady flow. 

For steady flow, flow properties are time independent and mass exits from the 

system equals the mass enters the system. 

For unsteady, flow properties are time dependent and mass exit s from the system 

may or may not equals the mass enters the system and the difference causes system 

mass change. 

iii. Compressible and incompressible flow 

For compressible flow, density becomes an additional variable; furthermore, 

significant variations in fluid temperature may occur as a result of density or pressure 

changes. There are four possible unknowns, and four equations are requ ired for the 

solution of a problem in compressible gas dynamics: equations for the conservation of 

mass, momentum, and energy, and a thermodynamic relations and equation of state for 

the substance involved. The study of compressible flow necessarily involves an 

interaction between thermodynamics and fluid mechanics. 

For incompressible flow can be assumed with density is not a variable. For this 

type of flow, two equations are generally sufficient to solve the problems encoun tered: 

the continuity equation or conservation of mass and a form of the Bernoulli equation, 

derivable from either momentum or energy considerations. Variables are generally 

pressure and velocity. 

 

iv. One, two and three-Dimensional Flow 

One-dimensional flow, by definition, did not consider velocity components in the y or z 

directions, as in Figure (1.1a). In true one-dimensional flow, area changes are not allowed. For 

inviscid flow the velocity profile is shown in section (a) and (c).  However, the more gradual the 

area change with x, the more exact becomes the one-dimensional approximation. 
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For viscose flow the velocity profiles is shown in 

Figure (1.1b). Actually, due to viscosity, the flow velocity at 

the fixed wall must be zero as in sections (a) and (c). 

Consider the flow in a varying area channel. The 

velocity profile in a real fluid is shown in Figure (1.1b) 

section (b).  

A complete solution of a problem in a fluid mechanics 

requires a three-dimensional analysis. However, even for 

incompressible flow a complete solution in three 

dimensions is possible only numerically with the aid of 

computer programs. Fortunately, a great many compressible 

flow problems can be solved with the use of a one-

dimensional analysis. One-dimensional flow implies that the 

flow variables are functions of only one space coordinate. 

 

1.2. Control volume approach  

 Figure (1.2) shows an arbitrary mass at time   and the same mass at time     , which  

composes the same mass particles at all times. If    is small, there will be an overlap of the two 

regions as shown, with the common region identified as region 2. At time   the given mass 

particles occupy regions   and  . At time      the same mass particles occupy regions   and  . 

Regions 1 & 2, which originally confines of the mass,  are called the control volume. 

 Introducing of concept of material 

derivative of any extensive property (a property 

which is mass dependent such as mass, enthalpy, 

internal energy … etc ) transforms to a control 

volume approach gives a valuable general relation 

called Reynolds’s Transport Theorem that can be 

used to find property change for many particular 

situations. Let 

                    the total amount of any 

extensive property in a given mass. 

    the amount of   per unit mass. Thus  

  ∫     ∭    
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We construct our material derivative from the mathematical definition 

  

  
    

    
[
                                            

  
] 

  

  
    

    
[
                    

  
]                                                                  

Now for the term  

   
    

        

  
 

The numerator represents the amount of   in region 3 at time (    ), and by definition region 

3 is formed by the fluid moving out of the control volume. Then; 

   
    

        

  
 ∬         ̂    

      

                                         

This integral is called a flux or rate of   flow out of the control volume. 

Now let us consider the term 

   
    

     
  

 

 

Region 1 has been formed by the original mass particles moving into the control volume (during 

time   ). Thus  

   
    

     
  

 ∬        ̌    

     

                                                 

This integral is called a flux or rate of   flow into the control volume. 

Now look at the first and last terms of equation (1.1) which is: 

   
    

[
              

  
]  

       

  
 

 

  
∭      

  

                                                

 Note that the partial derivative notation is used since the region of integration is fixed and 

time is the only independent parameter allowed to vary. Also note that as    approaches zero, 

region 2 approaches the original control volume. Then eq. (1.1) becomes 

  

  
    

    
[
                    

  
] 

        
 

  
∭      

  

 ∬         ̂    

      

 ∬        ̌    

     

                        

As  ̂    ̌ then the last two terms become 
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∬         ̂    

      

 ∬        ̌    

     

 ∬        ̂    

  

 

which is the net rate of    passes the control volume surface. The final transformation becomes: 

(
  

  
)  

 

  
∭      

  

 ∬        ̂    

  

                                                                

This relation, known as Reynolds’s Transport Theorem, which can be interpreted in words 

as: The rate of change of   property for a fixed mass system of fluid particles as it is moving is 

equal to the rate of change of   inside the control volume plus the net efflux of   from the 

control volume (flow out minus flow in across control volume boundary). 

 

Where 

 

  
   : Material or total or substantial derivative 

 

  
   : Partial derivative with respect to time 

    : control volume that containing the mass.  

    : control surface that surrounding the control volume. 

    : Mass-dependent (extensive) property; scalar or vector quantity. 

    : is the amount of the property per unit mass. For mass it equals one. 

    : Fluid density (kg/m
3
). 

   : Infinitesimal (very small) control volume. 

   : Infinitesimal control surface.  

    : Velocity vector. 

  ̂  : Outward unit vector which is perpendicular to   . 

 ̌   : Inward unit vector which is perpendicular to   . 

Examples of the application of this powerful transformation equation are conservation of 

mass, energy and momentum equations which are presented in the next chapter. 

 

References: 

1. James John & Thie Keith, Gas dynamics, 3td edition, Pearson prentice hall, Upper Saddle, 

New Jersey, 2006. 

2. Robert D.  Zucker & Oscar Biblarz , Fundamental of Gas Dynamics, John Wily & Sons,  

New York, 2002. 
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Chapter Two/Basic Equation of Compressible Flow 

 

 

2.1. Conservation of mass: 

(
  

  
)  

 

  
∭      

  

 ∬    (   ̂)   

  

 

Let         so    . For fixed amount of mass that moves through the control 

volume:  

(
     

  
)                                                                                                                  (   ) 

And for steady flow: 

 

  
∭     

  

                                                                                                            (   ) 

So the second term must equals to zero. 

∬   (   ̂)   

  

                                                                                                      (   ) 

Let us now evaluate the 

remaining integral for the case of 

one-dimensional flow. Figure 

(2.1) shows fluid crossing a 

portion of the control surface. 

Recall that for one-dimensional 

flow any fluid property will be constant over an entire cross section. Thus both the 

density and the velocity can be brought out from under the integral sign. If the 

surface is always chosen perpendicular to  , the integral is very simple to evaluate: 

∫  (   ̂)       ∫       (     )                                                        (   ) 

But integral in eq. 2.3 must be evaluated over the entire control surface, which 

yields: 
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∬   (   ̂)   

  

 ∑                                                                                      (   ) 

This summation is taken over all sections where fluid crosses the control 

surface. It is positive where fluid leaves the control volume (since    ̂ is positive 

here) and negative where fluid enters the control volume. 

For steady, one-dimensional flow, the continuity equation for a control 

volume becomes: 

∑                                                                                                                     (   )  

If there is only one section where fluid enters and one section where fluid leaves 

the control volume, this becomes: 

(     )    (     )                                                                                            (   )  

 ̇                                                                                                             (   ) 

   is the component of velocity perpendicular to the area A. If the density ρ is 

in     ⁄ , the area   is in    and velocity   is in   ⁄ ,  then  ̇ is in    ⁄ . 

Note that as a result of steady flow the mass flow rate into a control volume 

is equal to the mass flow rate out of the control volume. But if the mass flow rates 

into and out of a control volume is the same it doesn’t ensure that the flow is  

steady.  

For steady one-dimensional flow, differentiating eq. 2.8 gives: 

 (     )         ( )      (  )       ( )                                        (   ) 

Dividing by       

  

 
 
  

 
 
  

 
                                                                                                   (    ) 

 This expression can also be obtained by first taking the natural logarithm of 

equation (2.8) and then differentiating the result. This is called logarithmic 

differentiation. 

 This differential form of the continuity equation is useful in interpreting the 

changes that must occur as fluid flows through a duct, channel, or stream-tube. It 

indicates that if mass is to be conserved, the changes in density, velocity, and cross 

sectional area must compensate for one another. For example, if the area is 
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constant (      ), any increase in velocity must be accompanied by a 

corresponding decrease in density. We shall also use this form of the continuity 

equation in several future derivations. 

 

2.2. Conservation of energy. 

From first law of thermodynamics 

                                                                                                                   (    )  

Where    is the change in total energy of the system i.e. it is the change in 

internal, kinetic and potential energies,  (           ). Eq. 2.11 can be 

written on a rate basis to yield an expression that is valid at any instant of time: 

  

  
 
  

  
 
  

  
                                                                                                        (    ) 

      and       represent instantaneous rates of heat and work transfer 

between the system and the surrounding. They are rates of energy transfer across 

the boundaries of the system. These terms are not material derivatives since heat 

and work are not properties of a system. On the other hand, energy is a property of 

the system and       is a material derivative, then: 

(
  

  
)  

 

  
∭      

  

 ∬    (   ̂)   

  

                                                      (    ) 

For one-dimensional, steady flow the last integral is simple to evaluate, as 

          are constant over any given cross section. Assuming that the velocity   

is perpendicular to the surface  , we have 

∬    (   ̂)   

  

 ∑(     )  ∑ ̇                      (    ) 

 

  
∭      

  

                                                                                                     (    ) 
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We must be careful to include 

all forms of work, whether done 

by pressure forces or shear forces. 

Figure (2.2) shows a simple 

control volume. Note that the 

control surface is chosen carefully 

so that there is no fluid motion at 

the boundary, except:  

(a) Fluid enters and leaves the system. 

(b) A mechanical device crosses the boundaries of the system. 

For fluid enters and leaves the system, the pressure forces do work to push fluid 

into or out of the control volume. The shaded area at the inlet represents the fluid 

that enters the control volume during time   . The work done here is: 

  ́                                                                                            (    ) 

The rate of doing work, which called flow work, is 

  ́

  
      ̇                                                                                                   (    ) 

The rate at which work is transmitted out of the system by the mechanical device is 

       and 

  

  
 
   
  

 
  ́

  
 
   
  

  ̇                                                                          (    ) 

Thus for steady one-dimensional flow the energy equation for a control volume 

becomes 

  

  
 
   
  

 ∑ ̇(    )                                                                                (    ) 

The summation is taken over all sections where fluid crosses the control surface 

and is positive where fluid leaves the control volume and negative where fluid 

enters the control volume. 

If there is only one section where fluid leaves and one section where fluid enters 

the control volume, we have, (from continuity), for steady flow: 

 ̇    ̇     ̇ 
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Let us take: 

  

  
 
 

  
∭      

  

 ∬    (   ̂)   

  

  ̇                                                 (    ) 

   
  

 
 

  
∭       

  

 ∬     (   ̂)   

  

  ̇                                         (    ) 

Substitute in eqs (2.20) and (2.21) into eq (2.19) gives: 

     ∑(    )                                                                                            (    ) 

     (  
  

 
      )

   

 (  
  

 
      )

  

                    (    ) 

     (  
  

 
   )

 

 (  
  

 
   )

 

                                              (    ) 

This is the form of the energy equation that may be used to solve many problems. 

It is often referred as steady flow energy equation (SFEE).  

 

For unsteady flow, since change of kinetic and potential energies within the 

system is negligible, then (Unsteady F.E. E) becomes: 

,  * ̇ (  
  

 
   )+

  

-  ,   * ̇ (  
  

 
   )+

   

-  ( ̇ )  ( ̇ )     (    ) 

 ̇     ̇    ̇   ̇                                                                                        (    ) 

where    and     are internal energy and mass of the working fluid 

inside the system after 

change while    and     are 

internal energy and mass of 

the working fluid inside the 

system before change. 
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2.3. Conservation of momentum. 

If we observe the motion of a given quantity of mass, Newton’s second law tells 

us that the linear momentum will be changed in direct proportion to the applied 

forces. This is expressed by the following equation: 

∑  
 (        )

  
 
 

  
∭      

  

 ∬    (   ̂)   

  

                 (    ) 

Here   besides it is a velocity vector it also represents the momentum per unit 

mass. This equation is usually called the momentum or momentum flux equation. 

∑  represents the summation of all forces on the fluid within the control volume 

which maybe forces due to pressure, viscosity, gravity, surface tension … etc..  

For steady flow the time rate of change of linear momentum stored inside the 

control volume is 

 

  
∭      

  

                                                                                                   (    ) 

And momentum equation simplify to: 

∑  ∬    (   ̂)   

  

                                                                                      (    ) 

The x-component of this equation would appear as 

∑   ∬          

  

                                                                                          (    ) 

If there is only one section where fluid enters and one section where fluid 

leaves the control volume, we know (from continuity) that: 

 ̇   ̇     ̇   

And the momentum equation for a finite control volume becomes: 

∑   ∑  ̇ (        )                                                                                 (    ) 
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The summation is taken over all sections where fluid crosses the control 

surface and is positive where fluid leaves the control volume and negative where 

fluid enters the control volume. 

 

2.4. 1st law of thermodynamics. 

First law of thermodynamics takes the following form 

∑  ∑                                                                                                            (    ) 

Or  

                                                                                                                    (    )  

First law of thermodynamics is a conservation of energy and we dealt with in 

2.2. 

 

2.5. 2nd law of thermodynamics. 

Two concepts that are important to a study of compressible fluid flow are 

derivable from the second law of thermodynamics: the reversible process and the 

property entropy. For a thermodynamic system, a reversible process is one after 

which the system can be restored to its initial state and leave no change in either 

system or surroundings. As a consequence of this definition, it can be shown that a 

reversible process is quasi-static; changes occur infinitely slowly, with no energy 

being dissipated 

Since thermodynamics, is a study of equilibrium states, definite thermodynamic 

equations for changes taking place during processes can be derived only for 

reversible processes; irreversible processes can only be described 

thermodynamically with the use of inequalities. Irreversible processes involve, for 

example, the following: friction, heat transfer through a finite temperature 

difference, sudden expansion, and magnetization with hysteresis, electrical 

resistance heating, and mixing of different gases.  

 In general, any natural process is irreversible, so the assumption of 

reversibility, while it may simplify the thermodynamic equations, necessarily 
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yields an approximation. For many, cases, the assumption of reversibility leads to 

very accurate results; yet it is well to keep in mind that the reversible process is 

always an idealization. 

The thermodynamic property derivable from the second law is entropy, which 

is-defined for a system undergoing a reversible process by    (   ⁄ )   . 

Entropy changes were defined in the usual manner in terms of reversible 

processes: 

   ∫
     
 

                                                                                                            (    ) 

                                                                                                         (    ) 

The term     represents that portion of entropy change caused by the actual 

heat transfer between the system and its (external) surroundings. It can be 

evaluated readily from: 

    
     
 

                                                                                                               (    ) 

One should note that     can be either positive or negative, depending on 

the direction of heat transfer. If heat is removed from a system,    is negative and 

thus     will be negative. It is obvious that         for an adiabatic process. 

The term     represents that portion of entropy change caused by 

irreversible effects. Moreover,     effects are internal in nature, such as 

temperature and pressure gradients within the system as well as friction along the 

internal boundaries of the system. Note that this term depends on the process path 

and from observations we know that all irreversibilities generate entropy (i.e., 

cause the entropy of the system to increase). Thus we could say that  

                                                                                                                             (    ) 

Obviously,         only for a reversible process. An isentropic process is one 

of constant entropy. This is also represented by       . 

                                                                                                             (    ) 

A reversible-adiabatic process is isentropic, but an isentropic process does 

not have to be reversible and adiabatic we only know that     . 
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2.6. Equation of State. 

 An equation of state for a pure substance is a relation between pressure, 

.density, and temperature for that substance. Depending on the phase of the 

substance and on the range of conditions to which it is subjected, one of a number 

of different equations of state is applicable. However, for liquids or solids, these 

equations become so cumbersome and have such a limited range of application 

that it is generally more convenient to use tables of thermodynamic properties. For 

gases, an equation exists that does have a reasonably wide range of application, the 

perfect gas law; in its usual form, it is expressed as 

                                                                                                                          (    ) 

 For the derivation of the perfect gas law from kinetic theory, the volume of 

the gas molecules and the forces between the molecules are neglected. These 

assumptions are satisfied by a real gas only at very low pressures. However, even 

at reasonably high pressures, a real gas approximates a perfect gas as long as the 

gas temperature is great enough 

 

2.7. Thermodynamics Relations. 

Also  the following relations are very useful equations. Starting with the 

thermodynamic property relation: 

                                                                                                                   (    ) 

                  
  

 
                                                                      (    ) 

                  
  

 
                                                                      (    ) 

For perfect gas with constant specific heats 

     ∫
  

 
  ∫

  

 
                                                                  (    ) 

      ∫
  

 
  ∫

  

 
                                                                (    ) 

                               ⁄  
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Example 2.1 Ten kilograms per second of air enters a tank 

       in volume while        is discharged from the 

tank (Figure 2.4). If the temperature of the air inside the 

tank remains constant at      , and the air can be treated 

as a perfect gas, find the rate of pressure rise inside the tank. 

 

Solution: 

Select a control volume as shown in the sketch. For this case the net rate of efflux of mass from 

the control volume is 

∬   (   ̂)   

  

          

The volume is constant and also density is assumed constant inside the tank as temperature is 

constant, but it is time dependent. 

  
  

  
∭   

  

 ∬   (   ̂)   

  

 

∭  

  

          

     
  

  
   

From equation of state for a perfect gas  

      

  

  
   

  

  
 

  

  
         

 

   
           ⁄  

 

Example 2.2 Two kilograms per second of liquid hydrogen and eight kg/s of liquid oxygen are 

injected into a rocket combustion chamber in steady flow (Figure 2.5). The gaseous products of 

combustion are expelled at high velocity 

through the exhaust nozzle. Assuming 

uniform flow in the rocket nozzle exhaust 

plane, determine the exit velocity. The nozzle 

exit diameter is      . and the density of the 

gases at the exit plane is            
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Solution 

  
 

 
   

 

 
(    )             

Select a control volume as shown in the sketch. For this case of steady flow, Eq. (1.12) is 

applicable 

∬   (   ̂)   

  

   ∑      

The rate of influx into the control volume is 

             .  

The rate of efflux is 

(     )     (     )             

  
  

(    )(       )
         ⁄  

 

Example 2.3 An air stream at a velocity of         and density of 

          strikes a stationary plate and is deflected by    . Determine 

the force on the plate. Assume standard atmospheric pressure 

surrounding the jet and an initial jet diameter of     .  

 

solution 

Select a control volume as shown in Figure (2.6a). Writing the x 

component of eq. (2.30) for steady flow to determine fluid force on the 

plate 

∑   ∬     (   ̂)   

  

 

             [   (   )
 

 
(    ) ]          

This force is opposite by        

 

Example 2.4 A rocket motor is fired in place on a test stand. The rocket exhausts         at an 

exit velocity of        . Assume uniform steady conditions at the exit plane with an exit plane 

static pressure of       . For an ambient pressure of        , determine the rocket motor 

thrust transmitted to the test stand as shown in Figure (2.7). 
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Solution  

∑   ∬     (   ̂)   

  

 

∑                     

∬     (   ̂)   

  

            ̇    

        (     )    ̇    

        (      )    
              

                  

 

Example 2.5 A rigid, well-insulated vessel is initially evacuated. A valve 

is opened in a pipeline connected to the vessel, which allows air at 

      and       to flow into the vessel. The valve is closed when the 

pressure in the vessel reaches      . Determine the final equilibrium 

temperature of the air in the vessel over the temperature range of interest. 

 

Solution 

Select a control volume as shown in Figure (1.9). With no heat transfer, no work, and negligible 

    and    , the energy equation is  

*  * ̇ (  
  

 
   )+

  

+  *   * ̇ (  
  

 
   )+

   

+  ( ̇ )  ( ̇ )   

 ̇     ̇    ̇   ̇  

 ̇    ̇    

 ̇     ̇    

So eq. (1.32) is simplify to 

( ̇ )      ( ̇ )   

 and        
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Example 2.6 Steam enters an ejector 

(Figure 2.9) at the rate of               

with an enthalpy of              and 

negligible velocity. Water enters at the 

rate of              with an enthalpy of 

         and negligible velocity. The 

mixture leaves the ejector with an 

enthalpy of           and a velocity of           . All potentials may be neglected. 

Determine the magnitude and direction of the heat transfer.  

 

 ̇                    ̇                   

             ⁄                    ⁄                           

        ⁄                                ⁄                              

 ̇   ̇   ̇                           ⁄  

 ̇   ̇ (   
  
 

 
    )   ̇ (   

  
 

 
    )   ̇   ̇ (   

  
 

 
    ) 

 ̇   ̇     ̇     ̇   ̇ (   
  
 

 
) 

 ̇                               (    
            

 
) 

 ̇                       

 ̇              

 

 

Example 2.7 A horizontal duct of constant area contains CO2 flowing isothermally (Figure 

2.10). At a section where the pressure is        absolute, the average velocity is know to be 

      . Farther downstream the pressure has dropped to       abs. Find the heat transfer. 

 

Solution 

 

        
     ⁄  

       
     ⁄  

         ⁄  

        ⁄  

From state equation between 1 and 2, as T is constant: 
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From continuity equation 

 ̇                    

         
  
  
            ⁄  

     (   
  
  
 
  
 

 
    )  (   

  
  
 
  
 

 
    ) 

  (
  
    

 

 
)  

(        )

 
         ⁄  

 

Example 2.8 Hydrogen is expanded isentropically in a nozzle from an initial pressure of 

       , with negligible velocity, to a final pressure of        . The initial gas temperature is 

     . Assume steady flow with the hydrogen behaving as a perfect gas with constant specific 

heats, where                ⁄  and               ⁄ . Determine the final gas velocity 

and the mass flow through the nozzle for an exit area of       . 

 

Solution 

  
  

  
 

  

    
 

    

          
       

From isentropic relation 

     
  
  

    ⁄

    (
   

   
)
            ⁄

         

From energy equation 

     (  
  

 
   )

   

 (  
  

 
   )

  

 

   
  
 

 
    

  
 

 
 

   √ (     )  √   (     )  √          (         )             ⁄  

From equation of state 

   
  
   

 
   

           
           ⁄  

From continuity equation 

 ̇                        (      
 )           ⁄  
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Example 2.9 There is a steady one-

dimensional flow of air through a           

diameter horizontal duct (Figure 1.12). At a 

section where the velocity is            , 

the pressure is               and the 

temperature is        . At a downstream 

section the velocity is             and the 

pressure is               . Determine the total wall shearing force between these sections. 

 

Solution 

 

From eq. 

∑  ∑  ̇ (        )  

   
  
   

 
       

           
 

           ⁄  

 ̇                              
  ⁄            ⁄   

∑  (  )  (  )     

   (  )  (  )   (         ) 

   (                )    
  
 

 
               (               ) 
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Chapter Three/Wave Propagation 

 

3.1. Introduction 

 The method by which a flow adjusts to the presence of a body can be shown 

visually by a plot of the flow streamlines about the body. Figures (3.1) and (3.2) 

show the streamline patterns obtained for uniform, steady, incompressible flow 

over an airfoil and over a circular cylinder, respectively.  

 Note that the fluid particles are able to sense the presence of the body before 

actually reaching it. At points 1 and 2, for 

example, the fluid particles have been 

displaced vertically, yet 1 and 2 are points in 

the flow field well ahead of the body. This 

result, true in the general case of anybody 

inserted in an incompressible flow, suggests 

that a signaling mechanism exists whereby a fluid particle can be forewarned of a 

disturbance in the flow ahead of it. The velocity of signal waves sent from the 

body, relative to the moving fluid, apparently is greater than the absolute fluid 

velocity, since the flow is able to start to adjust to the presence of a body before 

reaching it. 

Thus, when a body is inserted into 

incompressible flow, a smooth, continuous 

streamlines result, which indicate gradual 

changes in fluid properties as the flow passes 

over the body. If the fluid particles were to 

move faster than the signal waves, the fluid would not be able to sense the body 

before actually reaching it.  and very abrupt changes in velocity vectors and other 

properties would ensue. 

 In this chapter, the mechanism by which the signal waves are propagated 

through incompressible and compressible flows will be studied. An expression for 

the velocity of propagation of the waves will be derived. 
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3.2. Wave formulation 

To examine the means by which disturbances pass through an elastic medium. A 

disturbance at a given point creates a region of compressed molecules that is 

passed along to its neighboring molecules and in so doing creates a traveling wave. 

Waves come in various strengths, which are measured by the amplitude of the 

disturbance. The speed at which this disturbance is propagated through the medium 

is called the wave speed. This speed not only depends on the type of medium and 

its thermodynamic state but is also a function of the strength of the wave. The 

stronger the wave is, the faster it moves. 

If we are dealing with waves of large amplitude, which involve relatively 

large changes in pressure and density, we call these shock waves. These will be 

studied later.  If, on the other hand, we observe waves of very small amplitude, 

their speed is characteristic only by the medium and its state. These waves are of 

vital importance since sound waves fall into this category. Furthermore, the 

presence of an object in a medium can only be felt by the object’s sending out or 

reflecting infinitesimal waves which propagate at the sonic velocity. 

Consider a long constant-area tube filled with fluid and having a piston at one 

end, as shown in Figure (3.3). The fluid is initially at rest. At a certain instant the 

piston is given an incremental velocity    to the left. The fluid particles 

immediately next to the piston are compressed a very small amount as they acquire 

the velocity of the piston. As the piston (and these compressed particles) continue 

to move, the next group of fluid particles 

is compressed and the wave front is 

observed to propagate through the fluid at 

sonic velocity of magnitude a. All particles 

between the wave front and the piston are 

moving with velocity    to the left and 

have been compressed from   to      

and have increased their pressure from p 

to        
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The flow is unsteady and 

the analysis is difficult. This 

difficulty can easily be solved by 

superimposing on the entire flow 

field a constant velocity to the 

right of magnitude a. 

 

3.3. Sonic Velocity 

 Figure (3.4) shows the problem. Since the wave front is extremely thin, we 

can use a control volume of infinitesimal thickness. For steady one-dimensional 

flow, we have from continuity equation 

 ̇               

But          ; thus 

                                                                                                                               

Application of this to our problem yields 

                       

                              

Neglecting the higher-order term and solving for   , we have 

     
    

 
                                                                                                                        

 Since the control volume has infinitesimal thickness, we can neglect any 

shear stresses along the walls. We shall write the x-component of the momentum 

equation, taking forces and velocity as positive if to the right. For steady one-

dimensional flow we may write from momentum equation 

∑   ∑  ̇            

              [        ] 

           

Canceling the area and solving for   , we have 
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Equations (3.2) and (3.3) may now be combined, the result is: 

     
  

  
                                                                                                                          

However, the derivative       is not unique. It depends entirely on the process. 

For example 

(
  

  
)
 

 (
  

  
)
 

  

 Thus it should really be written as a partial derivative with the appropriate 

subscript. 

Since we are analyzing an infinitesimal disturbance, we can assume 

negligible losses and heat transfer as the wave passes through the fluid. Thus the 

process is both reversible and adiabatic, which means that it is isentropic.  

Equation (4.4) should properly be written as: 

     (
  

  
)
   

                                                                                                                      

For substances other than gases, sonic velocity can be expressed in an 

alternative form by introducing the bulk or volume modulus of elasticity Ev. 

     (
  

  
)
   

  (
  

  
)
   

                                                                                         

     
  

 
                                                                                                                               

Equations (3.4) and (3.6) are equivalent general relations for sonic velocity 

through any medium. The bulk modulus is normally used in connection with 

liquids and solids. Table 4.1 gives some typical values of this modulus, the exact 

value depending on the temperature and pressure of the medium. For solids it also 

depends on the type of loading. The reciprocal of the bulk modulus is called the 

compressibility.  

 Equation (3.4) is normally used 

for gases and this can be greatly 

simplified for the case of a gas that 
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obeys the perfect gas law. For an isentropic process: 

                    

(
  

  
)
   

                
 

  
     

  √                                                                                                                              

For perfect gases, sonic velocity is a function of the            only. 

              
 

 
                                                                                                   

It is important to realize that both V and a are computed locally for the same 

point.  For other point within the flow we must seek further information to 

compute on the sonic velocity, which has probably changed. 

Subsonic flow,   , the velocity is less than the local speed of sound. 

Supersonic flow,    , the velocity is greater than the local speed of sound. 

We shall soon see that the Mach number is the most important parameter in the 

analysis of compressible lows. 

 

3.4: Wave Propagation 

Let us examine a point disturbance that is 

at rest in a fluid. Infinitesimal pressure 

pulses are continually being emitted and 

thus they travel through the medium at 

sonic velocity in the form of spherical 

wave fronts. To simplify matters we shall 

keep track of only those pulses that are 

emitted every second. At the end of 3 

seconds the picture will appear as shown in 

Figure (3.5). Note that the wave fronts are concentric. 

Now consider a similar problem in which the disturbance is moving at a speed 

less than sonic velocity, say    . Figure (3.6) shows such a situation at the end of 

3 seconds. Note that the wave fronts are no longer concentric. 
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Furthermore, the wave that was 

emitted at t = 0 is always in 

front of the disturbance itself. 

Therefore, any person, object, 

or fluid particle located 

upstream will feel the wave 

fronts pass by and know that 

the disturbance is coming.  

Next, let the disturbance 

move at exactly sonic velocity. 

Figure (3.7) shows this case and 

you will note that all wave 

fronts coalesce on the left side 

and move along with the 

disturbance. After a long period 

of time this wave front would 

approximate a plane indicated 

by the dashed line. In this case, 

no region upstream is 

forewarned of the disturbance as 

the disturbance arrives at the 

same time as the wave front.  

The only other case to 

consider is that of a disturbance 

moving at velocities greater than 

the speed of sound. Figure (3.8) 

shows a point disturbance 

moving at Mach number = 2 

(twice sonic velocity). The wave 
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fronts have coalesced to form a cone with the disturbance at the apex. This is 

called a Mach cone. The region inside the cone is called the zone of action since it 

feels the presence of the waves. The outer region is called the zone of silence, as 

this entire region is unaware of the disturbance. The surface of the Mach cone is 

sometimes referred to as a Mach wave; the half-angle at the apex is called the 

Mach angle and is given the symbol μ. It should be easy to see that: 

     
 

 
 

 

 
                                                                                                                   

For subsonic flow, no such zone of silence exists. If the disturbance caused by a 

projectile, the entire fluid is able to sense the projectile  moving through it, since 

the signal waves move faster than the projectile. No concentration of pressure 

disturbances can occur for subsonic flow; Mach lines cannot be defined. 

Let us now compare steady, uniform, subsonic and supersonic flow over a 

finite wedge-shaped body. If the fluid velocity is less than the velocity of sound, 

flow ahead of the body is able to sense its presence. As a result, gradual changes in 

flow properties take place; with smooth, continuous streamlines (see Figure 3.9).  

If the fluid velocity is greater than the velocity of sound, the approach flow, 

being in the zone of silence, is unable to sense the presence of the body. The body 

now presents a finite disturbance to the flow. The wave pattern obtained is a result 

of the addition of individual Mach waves emitted from each point on the wedge. 

This nonlinear addition yields a compression shock wave across which occur finite 

changes in velocity, pressure, and other flow properties. A typical flow pattern 

obtained for supersonic flow over the wedge is shown in Figure (3.10). 
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Chapter Four/Isentropic flow of a perfect gas in varying area duct 

 

 To study the compressible, isentropic flow through varying area channels such as 

nozzles, diffusers and turbine blade passages, the following assumptions are 

considered: 

1. One dimensional, steady flow of a perfect gas. 

2. Friction is zero. 

3. No heat and work exchange. 

4. Variation in properties is brought about by area change.  

5. Changes in potential energy and gravitational forces are negligible. 

 

4.1 Equations of motion. 

 Continuity equation:  

∬   (   ̂)   

  

 ∑                (   ) 

 ̇                                             (   ) 

(    )(     )(     )                                                                          (   ) 

Simplifying and ignoring high order 

                                                                                        (   ) 

Divided by       

  

 
 
  

 
 
  

 
                                                                                                       (   ) 

 

 Momentum equation: 

∑  ∬    (   ̂)   

  

                                                                                           (   ) 

∬    (   ̂)   

  

    [(    )   ]                                                               (   ) 
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If there is no electromagnetic force and friction force is negligible, the only 

acting force is the pressure force. The side wall pressure force in flow direction can 

be obtained with a mean pressure value: 

                     [(             )(         )]       

but       (         )      ; and thus 

                     (  
  

 
)                                                                      (   ) 

∑     (  
  

 
)    (    )(    )                                             (   ) 

   (  
  

 
)   (    )(    )     [(    )   ]                 (    ) 

Simplifying and ignoring high orders 

                                                                                                                 (    ) 

 

 Energy equation 

∬    (   ̂)   

  

                                                                                                  (    ) 

∬[        (             )]   (   ̂)   

  

                               (    ) 

The specific energy e is stand for internal, flow, kinetic and potential 

energies, since there is no heat and work transfer. Then from S.F.E.E.;  

   (     
  

 
   )      ((    )(    )  (    )  

(    ) 

 
  (    )) 

  (           
    

 
)                                                                         (    ) 

     
   

 
                                                                                                           (    ) 

Substitute from thermodynamics relations   
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                                                                                                                (    ) 

This is the energy equation which is similar to equation (4.11). 

 

4.2 Stagnation concept and relations 

If you had a thermometer and pressure gage, they would indicate the 

temperature and pressure corresponding to the static state of the fluid, as you move 

with flow velocity. Thus the static properties are those that would be measured if 

you moved with the fluid. 

Stagnation state defined as that thermodynamic state which would exist if the 

fluid were brought to zero velocity and zero potential. To yield a consistent 

reference state, we must qualify how this stagnation process should be 

accomplished. The stagnation state must be reached 

1. Without any energy exchange (     ) 

2. Without friction losses. 

From (1), change of entropy due to energy exchange is zero, i.e.          ; and 

from (2), change of entropy due to friction is zero, i.e.          . Thus the 

stagnation process is isentropic!  

Consider fluid that is flowing and 

has the static properties shown as (a) 

in Figure 4.3. At location (b) the fluid 

has been brought to zero velocity and 

zero potential under the foregoing 

restrictions. If we apply the energy 

equation to the control volume 

indicated for steady one-dimensional 

flow, we have. 

   (   
  
 

 
    )     (   

  
 

 
    ) 

   
  
 

 
                                                                                                     (    ) 
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Since condition (2) represents the stagnation state corresponding to the static 

state (1). Thus we call    the stagnation or total enthalpy corresponding to state 

(1) and designate it as    . Thus 

       
  
 

 
         

Or for any state, we have in general, 

     
  

 
                                                                                                      (    ) 

This is an important relation that is always valid. When dealing with gases, 

potential energy changes are usually neglected, and we write. 

     
  

 
                                                                                                             (    ) 

The one-dimension S.F.E.E. becomes: 

                                                                                                           (     ) 

                                                                                                           (     ) 

Equation (4.20) shows that for any adiabatic, no-work, steady, one-dimensional 

flow system, the stagnation enthalpy remains constant, irrespective of the losses. 

One must realize that when the frame of reference is changed, stagnation 

conditions change, although the static conditions remain the same. Consider still 

air with Earth as a reference frame. In this case, since the velocity is zero the static 

and stagnation conditions are the same. For gases we eliminate potential term 

   
  

   
              

     
  

 
   

     

 
     

   

 
    

     (   
 
   

 
)                                                                                       (    ) 

     (   
 
   

 
)                                                                                       (    ) 
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The stagnation process is isentropic. Thus    is used as the exponent in the 

relations between any two points on the same isentropic streamline. Let point 1 

refers to the static conditions, and point 2, the stagnation conditions. Then, 

  
  
 (

  
  
)
 (   )⁄

 

  
 
 (

  
 
)
 (   )⁄

    

     (   
 
   

 
)
 (   )⁄

                                                                          (    ) 

     (   
 
   

 
)
 (   )⁄

                                                                          (    ) 

 

Example 4.1 Air flows with a velocity of          ⁄  and has a pressure of 

            ⁄  and temperature of        . Determine the stagnation pressure. 

Solution 

  √    √        (        )            

  
 

 
 
      

     
       

     (   
 
   

 
)
 (   )⁄

         (        
     

 
)
(        ⁄ )

             ⁄  

 

Example 4.2 Hydrogen,          , has a static temperature of      and a 

stagnation temperature of      . What is the Mach number? 

Solution 

     (   
 
   

 
) 

(       )  (      ) (    
       

 
) 

        (           )                        
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Chapter Five/Subsonic and Supersonic Flow through a Varying Area 

Channels 
 

 

5.1 Isentropic Flow in varying Area ducts  
 

For isentropic flow, from continuity 

  

 
 

  

 
 

  

 
                                                                                                              

and from momentum equations 

                                                                                                                           

    
  

  
 

Substitute into momentum eq.   

  

 
 

  

 
 

  

   
                                                                                                             

      (
  

 
 

  

 
)                                                                                                    

From definition of sonic velocity, eq.3.4 

     (
  

  
)
   

 (
  

  
)
   

       
  

  
 

      (
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      (
 

      
)
  

 
                                                                                                

      
 

 
   



UOT 

Mechanical Department / Aeronautical Branch 

Gas Dynamics 

Chapter Five/Subsonic and Supersonic Flow Through a Varying Area Channels 

------------------------------------------------------------------------------------ -------------------------------------------------------- 

2-7 ch.5 

Prepared by A.A. Hussaini  2013-2014 

 

  

 
 (

   

      
)
  

 
                                                                                                     

Also from eq. 5.1. after substitute for         from definition of sonic velocity 

  

 
 

  

 
 

  

   
   

  

 
 

  

 
 

 

  

  

 
  

  

 
 

  

      
(
  

 
)                                                                                                     

Substitute eq.5.3 into continuity eq.4.5. gives  

  

      

  

 
 

  

 
 

  

 
   

  

 
  (

 

    
) (

  

 
)                                                                                                

Let us consider what is happening to fluid properties as it flows through a 

variable-area duct.  

For subsonic flow,    , then             .  

When    is negative (area is decreasing), then    is negative (pressure 

decreases) and    is negative (density decreases) and    is positive (velocity 

increases) and vice versa. 

For supersonic flow,    , then             .  

When    is negative (area is decreasing), then    is positive (pressure 

increases) and    is positive (density increases) and    is negative (velocity 

decreases) and vice versa. 

We summarize the above by saying that 

as the pressure decreases, the following 

variations occur:  
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Combines equations (5.4) and (5.3) to eliminate the term      with the 

following result: 
  

 
    (

  

 
)                                                                                                       

From this equation we see that: 

At low Mach numbers, density variations will be quite small. This means that 

the density is nearly constant (    ) in the low subsonic regime (      ) and 

the velocity changes compensate for area changes.  

At a Mach number equal to unity, we reach a situation where density changes 

and velocity changes compensate for one another and thus no change in area is 

required (    ).  

At supersonic flow, the density decreases so rapidly that the accompanying 

velocity change cannot accommodate the flow and thus the area must increase. 

 

A nozzle is a device that 

converts enthalpy (or pressure energy 

for the case of an incompressible 

fluid) into kinetic energy. From 

Figure 5.1 we see that an increase in 

velocity is accompanied by either an 

increase or decrease in area, 

depending on the Mach number. 

Figure 5.2 shows what these devices 

look like in the subsonic and 

supersonic flow regimes. 

 

A diffuser is a device that 

converts kinetic energy into enthalpy 

(or pressure energy for the case of 

incompressible fluids). Figure 5.3 

shows what these devices look like in 

the subsonic and supersonic regimes. 

Thus we see that the same piece of 

equipment can operate as either a 

nozzle or a diffuser, depending on the 

flow regime.  

Notice that a device is called a nozzle or a diffuser because of what it does, 

not what it looks like. 
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Further consideration of Figures 5.1 and 5.2 leads to some interesting 

conclusions. If one attached a converging section (see Figure 5.2a) to a high-

pressure supply, one could never attain a flow greater than Mach 1, regardless of 

the pressure difference available. On the other 

hand, if we made a converging–diverging device 

(combination of Figure 5.2a and b), we see a 

means of accelerating the fluid into the supersonic 

regime, provided that the proper pressure 

difference exists between inlet and exit plane. 

 

5.2 The ( ) Reference Concept 

 

Concept of a stagnation reference state was introduced which is an isentropic 

process. It will be convenient to introduce another reference condition since the 

stagnation state is not a feasible reference when dealing with area changes. (Why?) 

The new reference state with a superscript ( ) and define it as “that 

thermodynamic state which would exist if the fluid reached a Mach number of 

unity by some particular process”. There are many processes by which we could 

reach Mach 1.0 from any given starting point, and they would each lead to a 

different thermodynamic state. 

For isentropic flow process, adiabatic frictionless, flow the stagnation properties 

for all points are the same as well as the (*) properties are the same. 

For actual flow process, each point in the flow has its own stagnation and (*) 

properties. 

Consider a steady, one-

dimensional flow of a perfect gas 

with no heat or work transfer and 

negligible potential changes but 

with friction. Figure 5.5 shows a 

T –s diagram indicating two 

points in such a flow system. 

Above each point is shown its 

stagnation reference state, and 

below its reference state ( ). 



UOT 

Mechanical Department / Aeronautical Branch 

Gas Dynamics 

Chapter Five/Subsonic and Supersonic Flow Through a Varying Area Channels 

------------------------------------------------------------------------------------ -------------------------------------------------------- 

5-7 ch.5 

Prepared by A.A. Hussaini  2013-2014 

 

Note that the stagnation temperatures are the same and lie on a horizontal line, 

but the stagnation pressures are different, and also ( ) reference points will lie on 

another horizontal line (since no heat is added). 

Between ( ) reference state and the stagnation reference state lie all points in the 

subsonic regime. Below the ( ) reference state lie all points in the supersonic 

regime. 

 

5.3 Isentropic Table 

 

Mass flow rate at flow cross sectional area   can be expressed in terms of 

stagnation pressure and temperature 

 ̇                                                      

                                                               

  √                                                       

    ⁄                                                     

For perfect gas with constant specific heat 

 ̇  
 

  
  √    

 

 √ 
  √                                                                        

Substitute for p and T from  

     (    
   

 
)                                                                                             

     (    
   

 
)
      ⁄

                                                                                

 ̇  
  

 √  
  √  (    

   

 
)
            ⁄

                                              

 ̇  
   

 √  
                                                                                                            

       
 √ 

(       
 )

           ⁄
                                                                 

For isentropic flow where    and    are constant, cross section   can be related 

directly to Mach number. Select flow cross section area where     as a 
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reference area     . For steady flow, the mass flow rate 

at area   is equal to the mass flow rate at area   . 

 ̇   ̇   

   

 √  
       

   
 

 √  
                                                 

 

  
          

 

  
 

 

 
(
  [      ⁄ ]  

      ⁄
)

     
      ⁄

                 

The result of equation (5.11) is plotted 

in figure (5.6) for       . For each 

value of    ⁄  there are two possible 

isentropic solution, one subsonic and 

the other supersonic. The minimum 

area or throat area occurs at    . 

This agree well with the result of eq 5.6 

that illustrated in figure 5.2. and 5.3. 

A convergent-divergent nozzle is 

required to accelerate a slowly moving 

stream to supersonic velocities. 

 

Example: 5.1 

 

An airstream flows in a converging duct from cross section area    of 

      to a cross-sectional area    of       . If         ,            and 

         ⁄ . Find       and    . Assume steady one-dimensional isentropic 

flow. 

 Solution: 

Over the temperature range, air behaves as perfect gas with      .  

   
  
 

 
  

√   
 

   

√             
       

At          from isentropic flow table with       
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But    

  

  
 

  

  
      

So that 

  

  
 

  

  
 
  

  
       

From isentropic flow table ,          

For isentropic flow, (no shaft work, potential energy is neglected for a gas), 

          are constant. At         from isentropic flow table : 

  

   
           

   

     
               

  
   

           
   

     
         

At          
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