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3‐1 ST1EADY HEAT CONDUCTION IN PLANE WALLS

the rate of heat conduction through a plane wall is proportional to
the average thermal conductivity, the wall area, and the
temperature difference, but is inversely proportional to the wall
thickness. Also, once the rate of heat conduction is available, the
temperature T(x) at any location x can be determined by replacing
T2 in Eq. 3–3 by T, and L by x.
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The Thermal Resistance Concept
Equation 3–3 for heat conduction through a plane wall can be rearranged as

is the thermal resistance of the wall against heat conduction or simply the conduction resistance of
the wall. Note that the thermal resistance of a medium depends on the geometry and the thermal
properties of the medium. The equation above for heat flow is analogous to the relation for electric
current flow I, expressed as







3‐2 Thermal Resistance Network



Multilayer Plane Walls

The subscripts 1 and 2 in the Rwall relations above
indicate the first and the second layers, respectively.

The interface temperature T2 between the two walls
can be determined from



Noting that the heat transfer through the wall is by conduction and
the area of the wall is A = 3 m × 5 m= 15 m2, the steady rate of heat
transfer through the wall can be determined from







3–3 GENERALIZED THERMAL RESISTANCE NETWORKS









3–4 HEAT CONDUCTION IN CYLINDERS AND SPHERES







Multilayered Cylinders and Spheres



EXAMPLE 3–5 Heat Loss through an Insulated Steam Pipe



3–5 CRITICAL RADIUS OF INSULATION





EXAMPLE 3–6 Heat Loss from an Insulated Electric Wire

The rate of heat transfer becomes equal to the heat generated
within the wire, which is determined to be

The values of these two resistances are determined to be

To answer the second part of the question, we need to know the critical radius of insulation of the plastic
cover





Problems Group A















3.30



3.31

3.32



3–6 HEAT TRANSFER FROM FINNED SURFACES



where Ac is the cross‐sectional area of the fin at location x.
Substitution of this relation into Eq. a gives the differential
equation governing heat transfer in fins,

a

b



In general, the cross‐sectional area Ac and the perimeter p of a fin vary with x, which makes this
differential equation difficult to solve. In the special case of constant cross section and constant thermal
conductivity, the differential equation b reduces to

c

Therefore, the general solution of the differential equation Eq. c is

At the fin tip we have several possibilities, including
specified temperature, negligible heat loss (idealized as
an insulated tip), convection, and combined convection
and radiation (Fig. 3–36). Next, we consider each case
separately.

d
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where p is the perimeter, Ac is the cross‐sectional area of the fin,
and x is the distance from the fin base



The application of these two conditions on the general solution (Eq. d) yields, after some
manipulations, this relation for the temperature distribution



The fin tips, are exposed to the surroundings, and thus the proper boundary condition for the fin tip
is convection that also includes the effects of radiation. The fin equation can still be solved in this
case using the convection at the fin tip as the second boundary condition. This condition for the fin
tip is

At x=L  or

The application of these two conditions on the general solution (Eq. d) yields, after some
manipulations, this relation for the temperature distribution

the heat transfer from this fin can be expressed in the same way at it is done for the previous two
type and it will be as



Fin Efficiency







Fin Effectiveness

The effectiveness of such a long fin is determined to be



Example 3.7 
Copper‐plate fins of rectangular cross section having a thickness t=1mm, height L=10mm, and thermal
conductivity k=380W/m.oC are attached to a plane wall maintained at a temperature To=230oC. The fins
dissipate heat by convection into ambient at T∞=30oC with a heat transfer coefficient h=40W/m2.oC.
Assuming negligible heat loss from the fin tip determine the fin efficiency
Solution 
to determine the fin efficiency, we first calculate the parameter mL as follows 



A steel rod of diameter D=2cm, length L=10cm, and thermal conductivity k=50W/m.oC. is exposed to
ambient air at T∞ =20oC with a heat transfer coefficient h=30W/m2.oC. If one end of the rod is
maintained at a temperature of 70oC. calculate the heat loss from the rod.

Example 3.8 

Solution 
we can assume the rod to be a fin of the second type because it has a finite length. At the beginning
we can calculate mL

now to find the temperature at the other end where x=L



EXAMPLE 3–9 Effect of Fins on Heat Transfer from Steam Pipes
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