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4-1 LUMPED SYSTEM ANALYSIS

Consider a small hot copper ball coming out of an oven (Fig. 4-1). Mea-
surements indicate that the temperature of the copper ball changes with time,
but it does not change much with position at any given time. Thus the tem-
perature of the ball remains uniform at all times, and we can talk about the
temperature of the ball with no reference to a specific location.

Now let us go to the other extreme and consider a large roast in an oven. If
you have done any roasting, you must have noticed that the temperature dis-
tribution within the roast is not even close to being uniform. You can easily
verify this by taking the roast out before it is completely done and cutting it in
half. You will see that the outer parts of the roast are well done while the cen-
ter part is barely warm. Thus, lumped system analysis is not applicable in this
case. Before presenting a criterion about applicability of lumped system
analysis, we develop the formulation associated with it.

Consider a body of arbitrary shape of mass m, volume V, surface area A,,
density p, and specific heat C, initially at a uniform temperature 7; (Fig. 4-2).
At time t = 0, the body is placed into a medium at temperature 7., and heat
transfer takes place between the body and its environment, with a heat trans-
fer coefficient & For the sake of discussion, we will assume that 7., > T}, but
the analysis i1s equally valid for the opposite case. We assume lumped system
analysis to be applicable, so that the temperature remains uniform within the
body at all times and changes with time only, T = 7(z).

70°C
70°C

70°C
70°C  70°C

(a) Copper ball

(b) Roast beef
FIGURE 4-1

A small copper ball can be modeled
as a lumped system, but a roast
beef cannot.

SOLID BODY T,

m = mass
V = volume
p = density

T; = initial temperature

I T="T0)

O = hA|T,, - T()]
FIGURE 4-2



During a differential time interval dt, the temperature of the body rises by a

differential amount d7. An energy balance of the solid for the time interval dt
can be expressed as

Heat transfer into the body\ _ L IcEeute . fe or
E = | energy of the body
duingat during dt
hA(T.. — T) dt = mC,dT 4-1)

Noting that m = pV and dT = d(T — T..) since T,, = constant, Eq. 4—1 can be

rearranged as

t

dT—-T) _ _ has
T-T.  pVG, 4 4-2) T(1) 4
Integrating from ¢ = 0, at which T = T, to any time ¢, at which T = 7(#), gives -
T(t)— T.  hA,
P R o 4-3)
Taking the exponential of both sides and rearranging, we obtain
O — T, "
i o . _ SR where
T —T. = °¢ (4-4)
_ s
b= pVC, (1/s) (4-5)
is a positive quantity whose dimension is (time)~!. The reciprocal of b has ‘

time unit (usually s), and is called the time constant. Equation 44 is plotted FIGURE 4-3
in Fig. 4-3 for different values of b. ’ The temperature of a lumped

system approaches the environment
temperature as time gets larger.



Once the temperature 7(f) at time ¢ is available from Eq. 44, the rate of con-
vection heat transfer between the body and its environment at that time can be
determined from Newton’s law of cooling as

O(t) = hAJIT(1) — T.] (W) (4-6)

The total amount of heat transfer between the body and the surrounding
medium over the time interval + = 0 to 7 is simply the change in the energy
content of the body:

O = mC,[T(1) — T] (kJ) 4-7)

The amount of heat transfer reaches its upper limit when the body reaches the
surrounding temperature 7. Therefore, the maximum heat transfer between
the body and its surroundings is (Fig. 4-4)

Omax = IHCP(T.,, —T) (kJ) (4-8)

We could also obtain this equation by substituting the 7(?) relation from Eq.
4—4 into the Q(#) relation in Eq. 4-6 and integrating it from ¢ = 0 to t — <=,

|Criteria for Lumped System Analysis]

The lumped system analysis certainly provides great convenience in heat
transfer analysis, and naturally we would like to know when it is appropriate
to use it. The first step in establishing a criterion for the applicability of the
lumped system analysis is to define a characteristic length as

= % and a Biot number Bi as
. _hL, ao
== k ( = )

It can also be expressed as (Fig. 4-5)

h AT _ Convection at the surface of the body . Lk

=)
t Tw f—> <0
T .
T i
T, 1, i gl 7. 7. =
T, T,

Q = Omax =mCp (T, -T)

FIGURE 44

Heat transfer to or from a body
reaches its maximum value
when the body reaches

the environment temperature.

Convection
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‘ Conduction ’ f 8
SOLID
BODY
- %

o 4 S

'

. _ heat convection
Bi= -
heat conduction

FIGURE 4-5

Conduction resistance within the body

= RIL AT Conduction within the body

~ 1/h  Convection resistance at the surface of the body



When this criterion is satisfied, the temperatures within the body relative to
the surroundings (i.e., T — T,) remain within 5 percent of each other even for
well-rounded geometries such as a spherical ball. Thus, when Bi << 0.1, the
variation of temperature with location within the body will be slight and can
reasonably be approximated as being uniform.

The first step in the application of lumped system analysis is the calculation
of the Biot number, and the assessment of the applicability of this approach.
One may still wish to use lumped system analysis even when the criterion
Bi < 0.1 is not satisfied, if high accuracy is not a major concern.

Note that the Biot number is the ratio of the convection at the surface to con-
duction within the body, and this number should be as small as possible for
lumped system analysis to be applicable. Therefore, small bodies with high
thermal conductivity are good candidates for lumped system analysis, es-
pecially when they are in a medium that is a poor conductor of heat (such as
air or another gas) and motionless. Thus, the hot small copper ball placed in
quiescent air, discussed earlier, is most likely to satisfy the criterion for
lumped system analysis (Fig. 4-6).

h=15W/m2.°C

Spherical

copper
ball

k=401 W/m-°C
D=12cm

1xpD3
Le=y-=20 =1D=002m
- 5
Bi= e _15%0.02 _ 60075 < 0.1
k 201 ' :
FIGURE 4-6

Small bodies with high thermal
conductivities and low convection
coefficients are most likely

to satisfy the criterion for

lumped system analysis.



EXAMPLE 4-1 Temperature Measurement by Thermocouples

The temperature of a gas stream is to be measured by a thermocouple whose
junction can be approximated as a 1-mm-diameter sphere, as shown in Fig.
4-9. The properties of the junction are kK = 35 W/m - °C, p = 8500 kg/m3, and
C, = 320 J/kg - °C, and the convection heat transfer coefficient between the

Thermocouple

junction and the gas is h = 210 W/m? - °C. Determine how long it will take for wire
the thermocouple to read 99 percent of the initial temperature difference. '
SOLUTION
The characteristic length of the junction is
L3 Gas

=Y -8 1, 16001m)=167X10~m T h —> Junction

©" A, @wD2 6 6 ' D
L, (2100 6 -l R Dt

m?* - p ~4m
Bi=—<= k = 0.001 < 0.1 T@®
£ 35 Wim - °C FIGURE 4-9
Therefore, lumped system analysis is applicable, and the error involved in this
approximation is negligible.
In order to read 99 percent of the initial temperature difference 7; — 7.,

between the junction and the gas, we must have
T@) — T, For example, when 7; = 0°C and 7, = 100°C, a thermocouple is considered to

T,— T, = 0.01 have read 99 percent of this applied temperature difference when its reading

indicates 7(t) = 99°C.
The value of the exponent b is

hA;, —  h 210 W/m? - °C

pC,V  pC,L. (8500 kg/m?)(320 J/kg - °C)(1.67 X 10~* m)

T()—T.
T; — T

Therefore, we must wait at least 10 s for the temperature of the thermocouple

junction to approach within 1 percent of the initial junction-gas temperature
difference.

b= = 0462 s™!

= ol sy 0.0] =e 04625 —— t=10s



EXAMPLE 4-2 Predicting the Time of Death

A person is found dead at 5 PM in a room whose temperature is 20°C. The tem-
perature of the body is measured to be 25°C when found, and the heat trans-
fer coefficient is estimated to be h = 8 W/m2 . °C. Modeling the body as a
30-cm-diameter, 1.70-m-long cylinder, estimate the time of death of that per-
son (Fig. 4-10).

SOLUTION

Properties The average human body is 72 percent water by mass, and thus we
can assume the body to have the properties of water at the average temperature
of (37 + 25)/2 = 31°C; k = 0.617 W/m - °C, p = 996 kg/m3, and C, = 4178
J/kg - °C

The characteristic length of the body is

L -V _ wry L 7(0.15 m)*(1.7 m)
< Ay 2mr,L+2wr?  2w(0.15m)(1.7 m) + 2m(0.15 m)?

Then the Biot number becomes
hL. (8 W/m? - °C)(0.0689 m) >
kK 0.617 W/m - °C =HEE 0 FIGURE 4-10

Therefore, lumped system analysis is not applicable. However, we can still use
it to get a “rough” estimate of the time of death. The exponent b in this case is

= 0.0689 m

-

Bi =

)

b= hA i _ 8 W/m? - °C
pC,V  pC,L. (996 kg/m*)(4178 J/kg - °C)(0.0689 m)
=279 X 1073 s™!
Ta) — 7. = b N 25 — 20 _ e—219x 107357 —— [ =43860s =122 h
Tp— T 37 — 20

Therefore, as a rough estimate, the person died about 12 h before the body was
found, and thus the time of death is 5 aMm.



4-2 TRANSIENT HEAT CONDUCTION IN LARGE PLANE WALLS, LONG CYLINDERS, AND SPHERES WITH

SPATIAL EFFECTS

In Section, 4-1, we considered bodies in which the variation of temperature

within the body was negligible; that is, bodies that remain nearly isothermal

during a process. Relatively small bodies of highly conductive materials ap- T

proximate this behavior. In general, however, the temperature within a body h

will change from point to point as well as with time. In this section, we con-

sider the variation of temperature with time and position in one-dimensional 0

problems such as those associated with a large plane wall, a long cylinder, and L x

a sphere. i
Consider a plane wall of thickness 2L, a long cylinder of radius r,, and

a sphere of radius r, initially at a uniform temperature T;, as shown in Fig.

4-11. At time t = 0, each geometry is placed in a large medium that is at a |

constant temperature 7-. and kept in that medium for 7 > 0. Heat transfer takes

place between these bodies and their environments by convection with a uni- (a) A large plane wall

form and constant heat transfer coefficient 4. Note that all three cases possess

geometric and thermal symmetry: the plane wall is symmetric about its center

plane (x = 0), the cylinder is symmetric about its centerline (r = 0), and the

Initially ; o
J h

sphere is symmetric about its center point (r = 0). We neglect radiation heat T,| [Initially 7
transfer between these bodies and their surrounding surfaces, or incorporate h r=2 h

the radiation effect into the convection heat transfer coefficient A.

FIGURE 4—11 3

Schematic of the simple |

geometries in which heat

transfer is one-dimensional. (b) A long cylinder
(c) A sphere



The one-dimensional transient heat conduction problem just described can
be solved exactly for any of the three geometries, but the solution involves in-
finite series, which are difficult to deal with. However, the terms in the solu-
tions converge rapidly with increasing time, and for v > 0.2, keeping the first
term and neglecting all the remaining terms in the series results in an error
under 2 percent. We are usually interested in the solution for times with
7 > 0.2, and thus it 1s very convenient to express the solution using this one-
term approximation, given as

Plane _ T —-T. 2 i
sl 0(x, Nyan = T —T, Aje ™7 cos (A x/L), 7>0.2
. 1N =1, 2
Cylinder: 0, Dey = T —T7. A" Jo(\y1ir,), 7> 0.2
nr, 1) — I, . sin(\r/r,)
= 5 — — AT — . o ) B
Sphere 0(7, Dpn T, — T, Ae oA T>0.2

where the constants A; and A\, are functions of the Bi number only, and their
values are listed in Table 4—1 against the Bi number for all three geometries.
The function J is the zeroth-order Bessel function of the first kind, whose
value can be determined from Table 4—2. Noting that cos (0) = J4(0) = 1 and
the limit of (sin x)/x is also 1, these relations simplify to the next ones at the
center of a plane wall, cylinder, or sphere:

e — S 2

Center of plane wall (x = 0): 00, wan = T = AjeMr
; 2o =t 2

Center of cylinder (r = 0): B0, cpt = T T - A g™
o= Lo 2

Center of sphere (r = 0): B0, spn = T—T. Ae~ M

oo

(4-10)

(4-11)

(4-12)

(4-13)

(4-14)

(4-15)



TABLE 4-1

Coefficients used in the one-term approximate solution of transient one-
dimensional heat conduction in plane walls, cylinders, and spheres (Bi = hL/k
for a plane wall of thickness 2L, and Bi = hr,/k for a cylinder or sphere of

TABLE 4-2

The zeroth- and first-order Bessel
functions of the first kind

radius r,)
Plane Wall Cylinder Sphere

0.01 0.0998 1.0017 0.1412 1.0025 0.1730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0060
0.04 0.1987 1.0066 0.2814 1.0099 0.3450 1.0120
0.06 0.2425 1.0098 0.3438 1.0148 0.4217 1.0179
0.08 0.2791 1.0130 0.3960 1.0197 0.4860 1.0239
0.1 0.3111 1.0161 0.4417 1.0246 0.5423 1.0298
0.2 0.4328 1.0311 0.6170 1.0483 0.7593 1.0592
0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1164
0.5 0.6533 1.0701 0.9408 1.1143 1.1656 1.1441
0.6 0.70561 1.0814 1.0184 1.1345 1.2644 1.1713
0.7 0.7506 1.0918 1.0873 1.16539 1.3525 1.1978
0.8 0.7910 1.1016 1.1490 1.1724 1.4320 1.2236
0.9 0.8274 1.1107 1.2048 1.1902 1.6044 1.2488
1.0 0.8603 1.1191 1.2558 1.2071 1.5708 1.2732
2.0 1.0769 1.17856 1.5995 1.3384 2.0288 1.4793
3.0 1.1925 1.2102 1.7887 1.4191 2.2889 1.6227
4.0 1.2646 1.2287 1.9081 1.4698 2.4556 1.7202
5.0 1.3138 1.2403 1.9898 1.56029 2.56704 1.7870
6.0 1.3496 1.2479 2.04380 1.5253 2.6537 1.8338
7.0 1.3766 1.2632 2.0937 1.6411 2.7165 1.8673
8.0 1.3978 1.2570 2.1286 1.6526 2.7654 1.8920
9.0 1.4149 1.2598 2.1566 1.6611 2.8044 1.9106
10.0 1.4289 1.2620 2.1795 1.5677 2.8363 1.9249
20.0 1.4961 1.2699 2.2880 1.6919 2.9857 1.9781
30.0 1.6202 1.2717 2.3261 1.6973 3.0372 1.9898
40.0 1.6325 1.2723 2.34556 1.6993 3.0632 1.9942
50.0 1.5400 1.2727 2.3672 1.6002 3.0788 1.9962
100.0 1.6552 1.2731 2.3809 1.6015 3.1102 1.9990
o0 1.6708 1.2732 2.4048 1.6021 3.1416 2.0000

£ 10 58
0.0 1.0000 0.0000
0.1 0.9975 0.0499
0.2 0.9900 0.0995
0.3 0.9776 0.1483
0.4 0.9604 0.1960
0.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.3290
0.8 0.8463 0.3688
0.9 0.8075 0.4059
1.0 0.7652 0.4400
31 0.7196 0.4709
1.2 0.6711 0.4983
5.3 0.6201 0.5220
1.4 0.5669 0.5419
1.5 0.5118 0.5579
1.6 0.4554 0.5699
1.7 0.3980 0.5778
1.8 0.3400 0.5815
1.9 0.2818 0.5812
2.0 0.2239 0.5767
2.1 0.1666 0.5683
2.2 0.1104 0.5560
2.3 0.0555 0.5399
2.4 0.0025 0.5202
26 —0.0968 —0.4708
28 -0.1850 —0.4097
3.0 -0.2601 —0.3391
32 -0.3202 -0.2613



Note that the case 1/Bi = k/hL = 0 corresponds to i — oo, which corre-
sponds to the case of specified surface temperature T... That is, the case in
which the surfaces of the body are suddenly brought to the temperature T,
at t+ = 0 and kept at T, at all times can be handled by setting /& to infinity

The temperature of the body changes from the initial temperature 7; to the
temperature of the surroundings 7. at the end of the transient heat conduction
process. Thus, the maximum amount of heat that a body can gain (or lose if
T; > T.,) is simply the change in the energy content of the body. That is,

Omax = MC(T. — Ti) = pVC(T= — T)) (kJ) (4-16)

Once the Bi number is known, the above relations can be used to determine
the temperature anywhere in the medium. The determination of the constants
A, and A\, usually requires interpolation. For those who prefer reading charts
to interpolating, the relations above are plotted and the one-term approxima-
tion solutions are presented in graphical form, known as the transient temper-
ature charts. Note that the charts are sometimes difficult to read, and they are
subject to reading errors. Therefore, the relations above should be preferred to
the charts.

The transient temperature charts in Figs. 4—13, 4—14, and 4—-15 for a large
plane wall, long cylinder, and sphere were presented by M. P. Heisler in 1947
and are called Heisler charts. They were supplemented in 1961 with transient
heat transfer charts by H. Grober. There are three charts associated with each
geometry: the first chart is to determine the temperature 7, at the center of the
geometry at a given time . The second chart is to determine the temperature
at other locations at the same time in terms of 7,. The third chart is to deter-
mine the total amount of heat transfer up to the time t. These plots are valid
for > 0.2.
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The fraction of heat transfer can also be determined from these relations,
which are based on the one-term approximations already discussed:

P Il ( © ) 1—9 Sin A, 4-17)
ane wall: =1- oy —— -
Qmax L 0, wall )\I
Ji(\
Cylinder: ( Q ) =1 — 20, CV,M (4-18)
Qmm& cyl T )\l

Q sin A\; — A, COS A\,
Sphere: 0 =1 — 360, spn 3 (4-19)
max sph 1



EXAMPLE 4-3 Boiling Eggs

An ordinary egg can be approximated as a b-cm-diameter sphere (Fig. 4-19).
The egg is initially at a uniform temperature of 5°C and is dropped into boil-
ing water at 95°C. Taking the convection heat transfer coefficient to be
h = 1200 W/m? - °C, determine how long it will take for the center of the egg
to reach 70°C.

SOLUTION

Properties The water content of eggs is about 74 percent, and thus the ther-

mal conductivity and diffusivity of eggs can be approximated by those of water
at the average temperature of (b + 70)/2 = 37.5°C; k= 0.627 W/m - °C and

h = 1200 W/m2-°C

a = klpC, = 0.151 X 107® m?/s T,,=95°C

The Biot number for this problem is FIGURE 4-19
) hlo (1200 W/m? - °C)(0.025 m) B

= 0.627 W/m - °C =S

which is much greater than 0.1, and thus the lumped system analysis is not

applicable. The coefficients A, and A, for a sphere corresponding to this Bi are,
from Table 4-1,

A = 3.0753, A, = 1.9958

Substituting these and other values into Eq. 4-15 and solving for = gives

TD — Ta: 2 70 = 95 2
— A& =Mt . — ~(3.0753)% T =
T Ae > S os 1.9958¢ —> 0.209

which is greater than 0.2, and thus the one-term solution is applicable with an

error of less than 2 percent. Then the cooking time is determined from the de-
finition of the Fourier number to be

= Ty _ (0.209)(0.025 m)’ = 865 s = 14.4 min 1 herefore, it will take about 15 min for the center of the egg to be heated from
& " 0.151 X 106 m¥s 5°C to 70°C.



EXAMPLE 44 Heating of Large Brass Plates in an Oven

In a production facility, large brass plates of 4 cm thickness that are initially at
a uniform temperature of 20°C are heated by passing them through an oven
that is maintained at 500°C (Fig. 4-20). The plates remain in the oven for a

period of 7 min. Taking the combined convection and radiation heat transfer Sg=We]
coefficient to be h = 120 W/m?2 - °C, determine the surface temperature of the h =120 W/m=°C
plates when they come out of the oven. -
SOLUTION _a {L=4cm
Properties The properties of brass at room temperature are k= 110 W/m - °C, Brass
p = 8530 kg/m?, C, = 380 J/kg - °C, and a = 33.9 X 107 m?/s plate
More accurate results are obtained by using properties at average temperature. T = 20°C
Noting that the half-thickness of the plate is L = 0.02 m, from Fig. 4-13 we have ' )
1 k 100 W/m - °C 45.8 FIGURE 4-20
Bi AL (120 W/m? - °C)(0.02m) T,—T,
—6 .2 —=— =046 Also,
__ar_ (339 X 1070 m/s)(7 X 605) _ o I =T,
LR (0.02 m)? B
1 K
—=—=45.8
ot i 099 Therefore, L Te T Talo=Tu_ 16 099 = 0455
To_T‘f._ . ; Ti_Tm_To_T:aTi_Tw_ . R

and T =T,+ 0455(T; — T.) = 500 + 0.455(20 — 500) = 282°C

Therefore, the surface temperature of the plates will be 282°C when they leave
the oven.



EXAMPLE 4-5 Cooling of a Long Stainless Steel Cylindrical Shaft
A long 20-cm-diameter cylindrical shaft made of stainless steel 304 comes out

of an oven at a uniform temperature of 600°C (Fig. 4-21). The shaft is then al-

lowed to cool slowly in an environment chamber at 200°C with an average heat

transfer coefficient of h = 80 W/m?2 - °C. Determine the temperature at the cen-

ter of the shaft 45 min after the start of the cooling process. Also, determine

the heat transfer per unit length of the shaft during this time period.

SOLUTION

Properties The properties of stainless steel 304 at room temperature
are kK = 149 W/m - °C, p = 7900 kg/m*, C, = 477 Jkg - °C, and
a = 3.95 % 1075 m?s More accurate results can be obtained by
using properties at average temperature.

be determined from the Heisler charts. Noting that the radius of the shaft is
r,= 0.1 m, from Fig. 4-14 we have

1 _k__ 149Wm.°C _ .
Bi hr, (80 W/m? - °C)(0.1 m) ’ (T 3

af  (3.95 X 1076 m¥s)(45 X 60 s) =T, 0.40 and
L e p = 1.07

re (0.1 m)-

T, =T, + 0.4T; — T) = 200 + 0.4(600 — 200) = 360°C

Therefore, the center temperature of the shaft will drop from 600°C to 360°C

in 45 min.
To determine the actual heat transfer, we first need to calculate the maximum

heat that can be transferred from the cylinder, which is the sensible energy of
the cylinder relative to its environment. Taking L = 1 m,

T, =200°C
h =80 W/m2.°C

Stainless steel
shaft

T,=600°C ll)=20cm '5

FIGURE 4-21



m = pV = pwr2 L = (7900 kg/m*)m(0.1 m)> (1 m) = 248.2 kg
Omax = MCy(T., — T}) = (248.2 kg)(0.477 kJ/kg - °C)(600 — 200)°C

= 47,354 k]
The dimensionless heat transfer ratio is determined from Fig. 4-14c for a long cylinder to be
N U B
ol =181~ 186 ~ V%! 0 |
2 of 0= 0.62 Therefore, Q = 0.62Q. = 0.62 X (47,354 kJ) = 29,360 kJ
o7 = Bi*t = (0.537)%(1.07) = 0.309 e

which is the total heat transfer from the shaft during the first 45 min of the cooling.

ALTERNATIVE SOLUTION We could also solve this problem using the one-term
solution relation instead of the transient charts. First we find the Biot number

. hr, (80 W/m?* - °C)(0.1 m)

BI=7 29 Wim -°C__ 2/
The coefficients \; and A, for a cylinder corresponding to this Bi are deter-
mined from Table 4-1 to be ), = 0.970, A, = 1.122
—_— . . il . )
Substituting these values into Eq. 4-14 gives §, = =T = Aje M7= 1,122~ 0IRNLOD = 0 41

andthus  7,=T, + 041(T; — T,) = 200 + 0.41(600 — 200) = 364°C
The value of J,(x,) for \; = 0.970 is determined from Table 4-2 to be 0.430.
Then the fractional heat transfer is determined from Eq. 4-18 to be

Ti(x
Q D _ ) 0412430 _ g e

0. 1~ 20— 0.970

and thus @ = 0.636Q,,,. = 0.636 X (47,354 kJ) = 30,120 k]



4-3 TRANSIENT HEAT CONDUCTION IN SEMI-INFINITE SOLIDS

A semi-infinite solid is an idealized body that has a single plane surface and
extends to infinity in all directions, as shown in Fig. 4-22. This idealized body
is used to indicate that the temperature change in the part of the body in which
we are interested (the region close to the surface) is due to the thermal condi-
tions on a single surface. The earth, for example, can be considered to bea ..
semi-infinite medium in determining the variation of temperature near its sur-
face. Also, a thick wall can be modeled as a semi-infinite medium if all we are
interested in is the variation of temperature in the region near one of the sur-
faces, and the other surface is too far to have any impact on the region of in-
terest during the time of observation.

Consider a semi-infinite solid that is at a uniform temperature 7,. At time
t = 0, the surface of the solid at x = 0 is exposed to convection by a fluid at a
constant temperature 7., with a heat transfer coefficient 4. This problem can
be formulated as a partial differential equation, which can be solved analyti-
cally for the transient temperature distribution 7(x, f). The solution obtained is
presented in Fig. 4-23 graphically for the nondimensionalized temperature
defined as

Plane
surface

FIGURE 4-22

T, t)— T, T, t)—T;
=8 =1-—F—F—=—x"x (4-21)

against the dimensionless variable x/(2\/af) for various values of the param-
eter h\/atl/k.
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Note that the values on the vertical axis correspond to x = 0, and thus rep-
resent the surface temperature. The curve h/at/k = o corresponds to /1 — o,
which corresponds to the case of specified temperature T.. at the surface at
x = 0. That 1s, the case in which the surface of the semi-infinite body is sud-
denly brought to temperature 7., at f = 0 and kept at 7, at all times can be han-
dled by setting & to infinity. The specified surface temperature case is closely



approximated in practice when condensation or boiling takes place on the
surface. For a finite heat transfer coefficient h, the surface temperature
approaches the fluid temperature 7, as the time f approaches infinity.

The exact solution of the transient one-dimensional heat conduction prob-
lem in a semi-infinite medium that is initially at a uniform temperature of 7;
and is suddenly subjected to convection at time ¢ = 0 has been obtained, and
is expressed as

Ix,n —T; X hx | hat B hVat
To—T, erfc (2\/@) exp(k + 2 )[erfc (ZW . g % ] (4-22)

where the quantity erfc (§) is the complementary error function, defined as

erfe (&) =1 ——= f e du (4-23)
Vo

Despite its simple appearance, the integral that appears in the above relation
cannot be performed analytically. Therefore, it is evaluated numerically for
different values of &, and the results are listed in Table 4-3. For the special
case of h — <o, the surface temperature T, becomes equal to the fluid temper-
ature T, and Eq. 4-22 reduces to

To0-T,_ [ x i
e c(2 m) (4-24)




TABLE 4-3
The complementary error function

£ erfc (&) £ erfc (£) £ erfc (£) £ erfc (£) £ erfc (&) £ erfc (&)
0.00 1.00000 | 0.38 0.5910 | 0.76 0.2825 | 1.14 0.1069 1.52 0.03159 | 1.90 0.00721
0.02 0.9774 0.40 05716 | 0.78 0.2700 | 1.16 0.10090 | 1.54 0.02941 | 1.92 0.00662
0.04 0.9549 0.42 0.5525 | 0.80 0.2579 | 1.18 0.09516 | 1.66 0.02737 | 1.94 0.00608
0.06 0.9324 0.44 0.5338 | 0.82 0.2462 | 1.20 0.08969 | 1.58 0.02545 | 1.96 0.00557
0.08 0.9099 0.46 05153 | 0.84 0.2349 | 1.22 0.08447 | 1.60 0.02365 | 1.98 0.00511
0.10 0.8875 0.48 0.4973 | 0.86 0.2239 | 1.24 0.07950 | 1.62 0.02196 | 2.00 0.00468
0.12 0.8652 0.50 0.4795 | 0.88 0.2133 | 1.26 0.07476 | 1.64 0.02038 | 2.10 0.00298
0.14 0.8431 0.52 0.4621 | 090 0.2031 | 1.28 0.07027 | 1.66 0.01890 | 2.20 0.00186
0.16 0.8210 0.54 0.4451 | 092 0.1932 | 1.30 0.06599 | 1.68 0.01751 | 2.30 0.00114
0.18 0.7991 0.56 0.4284 | 094 0.1837 | 1.32 0.06194 | 1.70 0.01612 | 240 0.00069
0.20 0.7773 0.58 0.4121 | 096 0.1746 | 1.34 0.05809 | 1.72 0.01500 | 2.50 0.00041
0.22 0.7557 0.60 0.3961 | 098 0.1658 | 1.36 0.05444 | 1.74 0.01387 | 2.60 0.00024
0.24 0.7343 0.62 0.3806 | 1.00 0.1573 | 1.38 0.05098 | 1.76 0.01281 | 2.70 0.00013
0.26 0.7131 0.64 0.3654 | 1.02 0.1492 | 1.40 0.04772 | 1.78 0.01183 | 2.80 0.00008
0.28 0.6921 0.66 0.3506 | 1.04 0.1413 | 1.42 0.04462 | 1.80 0.01091 | 2.90 0.00004
0.30 0.6714 0.68 0.3362 | 1.06 0.1339 | 1.44 0.04170 | 1.82 0.01006 | 3.00 0.00002
0.32 0.6509 0.70 0.3222 | 1.08 0.1267 | 1.46 0.03895 | 1.84 0.00926 | 3.20 0.00001
0.34 0.6306 0.72 03086 | 1.10 0.1198 | 1.48 0.03635 | 1.86 0.00853 | 3.40 0.00000
0.36 0.6107 0.74 0.2953 | 1.12 0.1132 | 1.60 0.03390 | 1.88 0.00784 | 3.60 0.00000




EXAMPLE 4-6 Minimum Burial Depth of Water Pipes to Avoid Freezing

In areas where the air temperature remains below 0°C for prolonged periods of
time, the freezing of water in underground pipes is a major concern. Fortu-
nately, the soil remains relatively warm during those periods, and it takes weeks
for the subfreezing temperatures to reach the water mains in the ground. Thus,
the soil effectively serves as an insulation to protect the water from subfreezing
temperatures in winter.

The ground at a particular location is covered with snow pack at —10°C for a
continuous period of three months, and the average soil properties at that loca-
tion are k = 0.4 W/m - °C and « = 0.15 X 107® m%s (Fig. 4-24). Assuming an
initial uniform temperature of 15°C for the ground, determine the minimum
burial depth to prevent the water pipes from freezing.

SOLUTION

Analysis The temperature of the soil surrounding the pipes will be 0°C after
three months in the case of minimum burial depth. Therefore, from Fig. 4-23,
we have

hVat "
E el (since h — =)
= X =
_T(.x'.t)-?;__l 0—(—10) — 06 § 2Vl 036
T.—-T 15—(—100

We note that
1 = (90 days)(24 h/day)(3600 s/h) = 7.78 X 106s
and thus

x=2EVat =2 X 0.36V/(0.15 X 1076 m¥s)(7.78 X 10°s) = 0.77 m

Therefore, the water pipes must be buried to a depth of at least 77 cm to avoid
freezing under the specified harsh winter conditions.

[ Te=-10°C

i Soil 5T

| Waterplpc -—
A ;'-:_ T 15°c

FIGURE 4—-24



ALTERNATIVE SOLUTION The solution of this problem could also be deter-
mined from Eq. 4-24.

Txt)y—T; -
L1 b R ; 0—15 =erfc(L)=o.6o

%
I,—T; (2\/5) —10—=15 2Vat

The argument that corresponds to this value of the complementary error func-
tion is determined from Table 4-3 to be & = 0.37. Therefore,

x=2EVat =2 X037/(0.15 X 1075 m?¥s)(7.78 X 10¢s) = 0.80 m

Again, the slight difference is due to the reading error of the chart.



4-4 TRANSIENT HEAT CONDUCTION IN MULTIDIMENSIONAL SYSTEMS

The transient temperature charts presented earlier can be used to determine the e 2
temperature distribution and heat transfer in one-dimensional heat conduction T L.
problems associated with a large plane wall, a long cylinder, a sphere, and a . .
semi-infinite medium. Using a superposition approach called the product &y 7(rn) e Heat
solution, these charts can also be used to construct solutions for the fwo- transfer
dimensional transient heat conduction problems encountered in geometries
such as a short cylinder, a long rectangular bar, or a semi-infinite cylinder or j
plate, and even three-dimensional problems associated with geometries such -

as a rectangular prism or a semi-infinite rectangular bar, provided that all sur-
faces of the solid are subjected to convection to the same fluid at temperature
T, with the same heat transfer coefficient £, and the body involves no heat

(a) Long cylinder

generation (Fig. 4-25). The solution in such multidimensional geometries can T, /_I_\
be expressed as the product of the solutions for the one-dimensional geome- P
tries whose intersection is the multidimensional geometry. Heat

“ T(r,x,t. n transfer

\t_.—/
(b) Short cylinder (two-dimensional)

FIGURE 4-25




Consider a short cylinder of height a and radius r, initially at a uniform tem-
perature 7. There is no heat generation in the cylinder. At time ¢ = 0, the
cylinder is subjected to convection from all surfaces to a medium at temper-
ature 7. with a heat transfer coefficient /i. The temperature within the cylin-
der will change with x as well as r and time ¢ since heat transfer will occur
from the top and bottom of the cylinder as well as its side surfaces. That is,
T = T(r, x, 1) and thus this is a two-dimensional transient heat conduction
problem. When the properties are assumed to be constant, it can be shown that
the solution of this two-dimensional problem can be expressed as

AR %51 — T T(x, £) — T T, ) — T,
T.— T, ) T\T T —7, [ac\T T —7, ki (4-25)

cylinder wall : cylinder

That is, the solution for the two-dimensional short cylinder of height a and
radius r, is equal to the product of the nondimensionalized solutions for the
one-dimensional plane wall of thickness a and the long cylinder of radius r,,
which are the two geometries whose intersection is the short cylinder, as
shown in Fig. 4-26. We generalize this as follows: the solution for a multi-
dimensional geometry is the product of the solutions of the one-dimensional
geometries whose intersection is the multidimensional body.

For convenience, the one-dimensional solutions are denoted by

x.n—=1I
Oyan(x, 1) = W plane
J @ Jwall
.0 — I,
Ocyi(r, 1) = | —F— 7 infinice
! o cylinder

semi-infinite (4-26)

solid

T 1) — T,
Bsemi-inf(Xs ) = (%)

Plane wall
h 1 ...-__{\..-f\/v'/\.
] | ( |

e,

cylinder

FIGURE 4-26

A short cylinder of radius r, and
height a is the intersection of a long
cylinder of radius r, and a plane wall
of thickness a.



The proper forms of the product solutions for some other geometries are given
in Table 4-4. It is important to note that the x-coordinate is measured from the
surface in a semi-infinite solid, and from the midplane in a plane wall. The ra-
dial distance r is always measured from the centerline.

TABLE 4-4

Multidimensional solutions expressed as products of one-dimensional solutions for bodies that are initially at a
uniform temperature T, and exposed to convection from all surfaces to a medium at T..

' " _
1
o L r !
o
1
= x -
8(rn =6,,(nn O(rnn =8, (n0 0 i (x0) 8(xr0) =0,,(nN86,,, (x0
Infinite cylinder Semi-infinite cylinder Short cylinder
4
<
£ =
h 7 ‘\\
z i,
x ~
o yz0 =
0(x, 1) = B yinr (X 1) 80X, 1) = B rmiing (%, 1) Bgermiing 0L 1) B emivinr 5 D8 ermivinr 00 D) Qi (2.1)
Semi-infinite medium Quarter-infinite medium Corner region of a large medium




0(x, 1) = 8,,,(x.0)

Infinite plate (or plane wall)

O,y 1) =6, (x, ) O iine WD
Semi-infinite plate

exyzn=
a1t (% 1) O (3 1) B (2. 1)
Quarter-infinite plate

2z

8Ly, 1) =8, ,(x N0, (x.0)
Infinite rectangular bar

o(xyzh =
O (500 (00 € g (T 1)
Semi-infinite rectangular bar

a(xyzn =
Oyan (6.0 8, (01 6, (2.0
Rectangular parallelepiped

transient heat transfer for a two-dimensional geometry formed by the inter-

section of two one-dimensional geometries 1 and 2 is
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EXAMPLE 4-7 Cooling of a Short Brass Cylinder

A short brass cylinder of diameter D = 10 cm and height H = 12 cm is initially
at a uniform temperature 7, = 120°C. The cylinder is now placed in atmo-
spheric air at 25°C, where heat transfer takes place by convection, with a heat
transfer coefficient of h = 60 W/m? - °C. Calculate the temperature at (a) the
center of the cylinder and (b) the center of the top surface of the cylinder

15 min after the start of the cooli i
min after the start of the cooling. h = 60 W/m2-oC

SOLUTION
Properties The properties of brass at room temperature are k = 110 W/m - °C =
and « = 33.9 X 10-6 m?s ' |
Analysis (&) This short cylinder can physically be formed by the intersection of L) L
a long cylinder of radius 7, = 5 cm and a plane wall of thickness 2L = 12 cm, ~ . l
as shown in Fig. 4-28. The dimensionless temperature at the center of the OT";—"ro—r
plane wall is determined from Figure 4-13a to be ' 3

oo (339 X107 mUs)900s) _ o T' -=_1}20_ r |

B (0.06 m)® o T(,t)~T. ’

| _k__ 110Wm-°C Oyai(0. 1) = " = 0.8 |

—_——= = i - i w

Bi L (g0 Win? - “C)0.06m) O FIGURE 4-28

Similarly, at the center of the cylinder, we have
_at _ (3.39 X 1075 m¥s)(900 s)

T = =122
r2 (0.05 m)? : T(0,1)— o
1k 110 Wim - °C o 0.0, 1) = —T,-—T,,, = 0.5 erefore,
Bi fr, (60 Wim? - °C)(0.05m)
T(O 0, t) -
T “lbon = Ouanf(0. 1) X 0y(0, 1) = 0.8 X 0.5 =0.4  and
cylinder

T(0,0,1) = T, + 0.4(T; = T,.) = 25 + 0.4(120 — 25) = 63°C

This is the temperature at the center of the short cylinder, which is also the cen-
ter of both the long cylinder and the plate.



(b) The center of the top surface of the cylinder is still at the center of the long
cylinder (r = 0), but at the outer surface of the plane wall (x = L). Therefore,
we first need to find the surface temperature of the wall. Noting that x = L =
0.06 m,

3

0.06 m _ l
06 m T(L.1)-T,
-k 110 W/m - °C 0.6 T,-T.

==
o

= 0.98

|

i AL (60 W/mZ - °C)(0.06 m)

jos

Then

1 ) (m, :)—T,o)('r‘,-n

Oan(L. 1) = Y P Ti—Te

) =0.98 X 0.8 =0.784

Therefore,

T(L,0,1)-T,
)

o = Owan(L, 1)0.4(0, 1) = 0.784 X 0.5 = 0.392
cylinder

and

T(L,0,t)=T,+039T; — T,) = 25 + 0.392(120 — 25) = 62.2°C

which is the temperature at the center of the top surface of the cylinder.



EXAMPLE 4-8 Heat Transfer from a Short Cylinder

Determine the total heat transfer from the short brass cylinder (p = 8530
kg/m3, C, = 0.380 kJ/kg - °C) discussed in Example 4-7.

SOLUTION
m=pV= pTrr.,2 L = (8530 kg/m*)=(0.05 m)*0.06 m) = 4.02 kg
Qusx = mC,(T; — T,.) = (4.02 kg)(0.380 ki/kg - °C)(120 — 25)°C = 145.1 KJ

Then we determine the dimensionless heat transfer ratios for both geometries.
For the plane wall, it is determined from Fig. 4-13c to be

Bi = —— = = = 0.0327
. 1/Bi ~ 30.6 ( 0 ) s
'&“ = (0.0327)%(8.48) = 0.0091| \Lrax/P22¢
Similarly, for the cylinder, we have
Bi = 1= = 535 = 0.027
2 infinit
"L“‘ = (0.0272)%(12.2) = 0.0090 | \Cmsx/ .

Then the heat transfer ratio for the short cylinder is,
(=), () + 5[ - 5]
Omax short eyl Omax | Qmax 2 Omax 1
= (0.23 + 0.47(1 — 0.23) = 0.592

Therefore, the total heat transfer from the cylinder during the first 15 min of
cooling is

Q = 0.5920,x = 0.592 X (145.1 kJ) = 85.9 k]



EXAMPLE4-9  Cooling of a Long Cylinder by Water

A semi-infinite aluminum cylinder of diameter D = 20 cm is initially at a uni-
form temperature T, = 200°C. The cylinder is now placed in water at 15°C
where heat transfer takes place by convection, with a heat transfer coefficient
of h = 120 W/m? - °C. Determine the temperature at the center of the cylinder
15 cm from the end surface 5 min after the start of the cooling.

SOLUTION
Properties The properties of aluminum at room temperature are kK = 237
W/m-°Cand o = 9.71 x 10-¢ m?/s

First we consider the infinitely long cylinder and evaluate the Biot number:

g hry _ (120 Win? - 000 m)
=% =" 237Wim.-°Cc____ "
The coefficients X, and A, for a cylinder corresponding to this Bi are deter-

mined from Table 4-1 to be Ay = 0.3126 and A; = 1.0124. The Fourier num-
ber in this case is
af (971 X 1077 m¥/s)(5 X 60s)

= —= 3 = 2.9] > 0.2
i (0.1 m)y?

~

0 = By (0, 1) = Aje™7 = 1,0124¢~ 3126729 = 0,762
The solution for the semi-infinite solid can be determined from

hx | h’at X hVat
1 — 0p0us .r,r)=crfc( gk )—cx (—,+—,)[crfc( + — )]
et 2Vat AT 2Var Kk

First we determine the various quantities in parentheses:

X _ 0.15m — 044
2Var 2V(O.71 X 107 m¥s)(5 X 60s)

hVad _ (120 Wim? - °C)V(9.7T X 107 m7s)300s) _ ) oo
k 237 W/m - °C ‘

§=

T,=15C

h =120 W/m?-°C

x=15cm

FIGURE 4-29



py (120 Wim? - °C)(0.15 m)

k= B3TWim.°C ol
e - (" "k“‘) = (0.086)2 = 0.0074

Substituting and evaluating the complementary error functions from Table 4-3,

Ogemiind X, 1) = 1 — erfc (0.44) + exp (0.0759 + 0.0074) erfc (0.44 + 0.086)
=1 — 0.5338 + exp (0.0833) X 0.457
= 0.963

Now we apply the product solution to get

T — Iy
T;i—T,

cemi-infinite = Osemiin(Xs 1)0(0, 1) = 0.963 X 0.762 = 0.734
cylinder

and

T(x,0,1) = T, + 0.734(T; — T,.) = 15 + 0.734(200 — 15) = 151°C

which is the temperature at the center of the cylinder 15 cm from the exposed
bottom surface.



PROBLEMS — 4
Lumped system applications and criteria

4.1

4.2

4.3

4.4

A solid copper sphere of diameter 10cm, initially at a uniform
temperature of 250°C, is suddenly immersed in a well-stirred
fluid that is maintained at a uniform temperature of 50°C. The
heat transfer coefficient between the sphere and the fluid is
200W/m’.°C. (a) Check whether lumped system analysis is
applicable. (b) If it is applicable, determine the temperature of
the copper block at times t=1min, t=2min, and t=5min after
immersion in the cold fluid. [for copper k=386W/m.°C,
p=8954kg/m’, and C=3831/kg.°C.]

A solid iron sphere of diameter 5Scm, initially at a uniform
temperature of 700°C, is exposed to a cool air stream at 100°C.
The heat coefficient between the air stream and the surface of
the iron sphere is 80W/m’.°C. (a) Check whether lumped system
analysis is applicable. (b) If applicable, determine the time
required for the temperature of the sphere to reach 300°C. [For
iron, k=60W/m.°C, p=7800kg/m’, and C=460J/kg.°C.]
Answer: (b) 6.84min

A large aluminum plate of thickness 3cm is initially at a
uniform temperature of 50°C. Suddenly it is subjected (both
surfaces) to a cool air stream at 20°C. The heat transfer
coefficient between the air stream and the surface is 50W/m”.°C.
(a) Check whether lumped system analysis is applicable. (b) If
applicable, determine the time required for the temperature of
the plate to reach 40°C. [for aluminum, k=204W/m.°C,
p=2707kg/m’, and C=896J/kg.°C.]

A 3cm diameter aluminum sphere is initially at a temperature of
175°C. It is suddenly immersed in a well-stirred fluid at a
temperature of 25°C The temperature of the sphere is lowered to

100°C in 42S. Calculate the heat transfer coefficient. Check
whether lumped system analysis is applicable. [For aluminum,
k=204W/m.°C, p=2707kg/m’, and C=896J/kg.°C.]

4.7

4.8

4.9

A 6cm diameter potato at a uniform temperature of 80°C is
taken out of the oven and suddenly exposed to ambient air at
20°C. If the heat coefficient between the air and the potato is
25W/m’.°C, determine the time required for the potato to reach

50°C.[ffor  potato, k=7W/m.°C,  p=1300kg/m’, and
C=43001/ke°C.]  Apswer: 26min

Consider an aluminum cube of side 3cm that is initially at a
uniform temperature of 50°C. Suddenly all its surfaces are
exposed to cool air at 20°C. The heat transfer coefficient
between the air and the surfaces is 50W/m”.°C. Assuming that
lumped system analysis is applicable, develop an expression for
the temperature T(t) of the cube as a function of time and plot
the temperature of the solid against time. [for aluminum,
k=204W/m.’C, p=2707kg/m’, and C=896J/kg.°C.]

Consider a copper block of sides 2cm X 2cm X 3cm, initially at a
uniform temperature of 300°C, that is immersed in a fluid at
25°C. The heat transfer coefficient between the fluid and the
surfaces is 8OW/m”.°C. Calculate the time required for the cube
to cool to 50°C. Check the validity of the lumped system
analysis. [For copper. k=386W/m.°C, p=8954kg/m3_. and
C=383J/kg.°C.] Answer 6.42min

A 0O.lecm diameter long wooden stick at 15°C is suddenly
exposed to 500°C gases with a surface heat transfer coefficient
of 15W/m”.°C between the stick and the gases. If the ignition
temperature of the wood is 315°C. find the exposure time before
possible ignition. [ For wood, k=0.14W/m.°C, p=600kg/m3, and
C=250J/kg.°C.] Answer: 2.41S

A short, cylindrical aluminum bar of lem diameter and 2em
height is initially at a uniform temperature of 150°C. Suddenly
the surfaces are subjected to convective cooling with a heat
transfer coefficient of 15W/m’.°C into an ambient fluid at 30°C.
Calculate the temperature of the cylinder 1min after the start of
the cooling. [For aluminum, k=204W/m.’C, p=2707kg/1113_. and
C=896J/kg.°C.] Answer: 129.7°C



4,10 A thermocouple junction, approximated as a sphere of 4.15

constantan, is to be used to measure the temperature of a gas.
The heat transfer coefficient between the gas and the
thermocouple is 400W/m’°C. Calculate the maximum
allowable diameter of the junction if the thermocouple should
measure 95 percent of the applied temperature difference in 5S.[
For  constantan, k=1.28W/m.°C, p=1458kg/m3, and
C=410J/kg.°C.]

4.11 A steel ball [k=35W/m.°C, p=7800kg/m’, and C=460J/kg.°C.]

4.16

5.0cm in diameter and initially at a uniform temperature of 4.17

450°C is suddenly placed in a controlled environment in which
the temperature is maintained at 100°C. The convection heat
transfer coefficient is 10W/m”.°C. Calculate the time required
for the ball attain a temperature of 150°C. Answer:
1.62hr
4.12 A copper sphere having a diameter 3.0cm is initially at a
uniform temperature of 50°C. It is suddenly exposed to an air

4.18

stream of 10°C with h=15W/m>.°C. How long does it take the 4.19

sphere temperature to drop 25°C?

Transient Temperature Heat Flow In A Semi-Infinite Solids

4.13 A thick stainless-steel slab [a=1.5x10'51112/S, and k=60W/m.’C]
is initially at a uniform temperature of 220°C and maintained at
that temperature. By treating the slab as a semi-infinite solid,
determine the temperature at a depth lcm from the surface and

the heat flux at the surface 2min after the surface temperature
lowered.

A fireclay brick slab [a=5.4x10'71112/S, and k=1W/m.°C] 10cm
thick is initially at a uniform temperature of 350°C. suddenly
one of its surfaces is subjected to convection with a heat transfer
coefficient of 100W/m>.°C into an ambient at 40°C. Calculate

the temperature at a depth 1cm from the surface 2min after start
of cooling. Answer: 309.7°C

4.14

4.20

4.21

A thick aluminum slab [¢=8.4x10"m?*/S, and k=200W/m.°C] is
initially at a uniform temperature of 20°C suddenly one of its
surfaces is raised to 100°C. Calculate the time required for the
temperature at a depth Scm from the surface to reach to 80°C.
Answer: 140.7S
A thick stainless steel slab [a=l.6x10'51112/S, and k=60W/m.°C]
is initially at a uniform temperature of 100°C. One of its
surfaces is suddenly lowered to 30°C. Determine the time
required for the temperature at a depth 2m from the surface to
reach 50°C.
A thick bronze [0=.86x10"m?/S, and k=26W/m.’C] is initially
at a uniform temperature of 250°C. Suddenly one of its surfaces
is exposed to convection cooling by a fluid at 25°C Assuming
that the heat transfer coefficient for convection between the
fluid and the surface is 150W/1112.°C, determine the temperature
at a location 5cm from the surface 10min after the exposure.
A thick wood wall [0=.82x10"m%S, and k=0.15W/m.°C] is
initially at a uniform temperature of 20°C. Suddenly one of its
surfaces is raised to 80°C. Calculate the temperature at a
distance 2cm from the surface 10min after the exposure.
A thick concrete wall having a uniform temperature of 54°C is
suddenly subjected to an air stream at 10°C. The heat transfer
coefficient is 2.6W/m’°C. Calculate the temperature in the
concrete slab at depth 7cm after 30min.
A very large slab of copper is initially at a temperature of
300°C. The surface temperature is suddenly lowered to 35°C.
What is the temperature at a depth of 7.5cm 4min after the
surface temperature is changed.
On a summer day a concrete driveway may reach a temperature
of 50°C. Suppose that a stream of water is directed on the
driveway so that the surface temperature is suddenly lowered to
10°C. How long will it take to cool the concrete to 25°C at a
depth of 5cm from the surface?



4.22

4.23

4.24

4.25

4.26

4.27

4.28

A semi-infinite slab of copper is exposed to a constant heat flux Large Plane Wall
at the surface of 0.32MW/m”. Assume that the slab is in a 4.20 A steel plate [¢=1.2x10"m%S, k=45W/m.°C. Cp=465J/kg.°C,

vacuum, so that there is no convection at the surface. What is
the surface temperature after Smin if the initial temperature of
the slab is 30°C? What is the temperature at a distance of 15 cm
from the surface after Smin?

A large slab of copper is initially at a uniform temperature of
100°C. Its surface temperature is suddenly lowered to 40°C.
Calculate the heat-transfer rate through a plane and the
temperature at the depth of 7.5cm from the surface 5S after the
surface temperature is lowered.

A large slab of aluminum at a uniform temperature of 25°C is
suddenly exposed to a constant surface heat flux of 25kW/m>.
What is the temperature at a depth of 2.5cm after 2min. How
long would take for the temperature to reach 150°C at the depth
of 3cm?

A piece of ceramic material [k=0.8W/m.°C, p=2700kg/m’,
C=0.8kJ/kg.°C] is quite thick and initially at a uniform
temperature of 25°C. The surface of the material is suddenly
exposed to a constant heat flux of 1000W/m®. Calculate the
temperature at a depth of 1.5c¢cm 5Smin after.

A large slab of concrete is suddenly exposed to a constant
radiant heat flux of 1000W/m” on one of its surfaces. The slab is
initially in temperature at 25°C. calculate the temperature at a
depth of 10cm in the slab after a time of 10h.

A very thick plate of stainless steal (18% Cr, 8%Ni) at a
uniform temperature of 300°C has its surface temperature
suddenly lowered to 100°C. Calculate the time required for the
temperature at a depth of 3cm to attain a value of 200°C.

A thick wood slab [¢=1.28x10"m%S, and k=0.17W/m.°C] that
is initially at a uniform temperature of 25°C is exposed to hot
gases at 550°C for a period of 6min. the heat transfer coefficient
between the gases and the wood slab is 30W/m>.°C. If the
ignition temperature of the wood is 420°C, determine if the
wood will ignite.

4.30

4.31

4.32

4.33

4.34

p=7 833kg/1n3 ] thickness 6¢m, initially at a uniform temperature
of 250°C, is suddenly immersed in an oil bath at 30°C. The
convective heat transfer coefficient between the fluid and the
surface is 500W/m>.°C. How long it take for the center-plane to
cool to 140°C?

A copper plate of thickness 4cm is initially at a uniform
temperature of 25°C. Suddenly both of its surfaces are raised to
50°C. Calculate the centerline temperature 10min after the
surface temperature is raised.

A fireclay brick slab [[¢=5.4x10"m%S, k=1W/m.°C] of
thickness 6cm is initially at a uniform temperature of 400°C.
Suddenly one of its surfaces is subjected to convection with a
heat transfer of 100W/m>.°C.into an ambient at 50°C. The other
surface is insulated. Calculate the centerline temperature 1h
after the start of cooling

A large slab of aluminum has a thickness of 10cm and is
initially uniform in temperature at 400°C. Suddenly it is
exposed to a convection environment at 100°C with
h=1500W/m>.°C. How long it take the centerline temperature to
drop to 200°C.

A horizontal copper plate 12cm thick is initially uniform in
temperature at 250°C. The bottom surface of the plate is
msulated. The top surface is suddenly exposed to a fluid at
50°C. After 6min the surface temperature has dropped to 150°C.
Calculate the convection heat-transfer coefficient which causes
this drop.

A plate of stainless steel (18%Cr.85Ni) has a thickness of 3.0cm
and is initially uniform in temperature at 500°C. The plate is
suddenly exposed to a convection environment on both sides at
50°C with h=150W/m>°C. Calculate the times for the centerline
and face temperature to reach 100°C.



4.35 In a meat processing plant, 2cm thick steaks [k=0.5W/m.°C, and 4.40 A long 35cm diameter cylindrical shaft made of stainless steel

Long
4.36

4.37

4.38

0=1x10"m?/S] that are initially at 30°C are to be cooled by
passing them through a refrigeration room at -10°C. The heat
transfer coefficient on both sides of the steaks is 10W/m>.°C. If
both surfaces of the steaks are to be cooled to 3°C. determine
how long the steaks should be kept in the refrigeration room.
Cylinder

A long steel shaft of radius 15cm[e=1.6x10"m>S,
k=60W/m.°C, Cp=465J/kg.°C, p=7833kg/m’] is taken out of an
oven at a uniform temperature of 500°C and immersed in a
well-stirred large of 25°C coolant. The heat transfer coefficient
between the shaft surface and the coolant is 200W/m>.°C.
Calculate the time required for the shaft center to reach 100°C
and the amount of heat transfer form the shaft at this time.

A long steel bar of diameter 6cm is initially at a uniform
temperature of 200°C. Suddenly the surface of the bar is
exposed to an ambient at 20°C with a heat transfer coefficient of
400W/m>.°C. Calculate the center temperature 3min after the
start of the cooling. Calculate the energy removed from the bar
per meter length during this time period.

A hot dog can be regarded as a solid having a shape in the form
of a long solid cylinder. Consider a hot dog [a=1.6x10’71112/S,
and k=0.5W/m.°C] of diameter 2.4cm, initially at a uniform
temperature of 5°C, dropped into boiling water at 100°C. The
heat transfer coefficient between the water and the surface is

200W/m2.°C. If the meat is considered cooked when its center
temperature reaches 80°C, how long will it take for the

centerline temperature to reach 80°C?
A long pure copper rod of diameter 8cm is initially at a uniform

temperature of 120°C. It is suddenly dropped into a coolant pool
at 25°C. The heat transfer coefficient between the coolant and
the rod is 400W/m’ °C. Determine the center temperature of the
rod 120S after exposure to the coolant. Calculate the energy
removed from the rod per meter length during this time period.

4.41

4.42

304 [k=15W/m.°C.p=7900kg/m®>, Cp=477J/kg°C, and
a=3.95x10'61112/S] comes out of an oven at a uniform
temperature of 500°C. The shaft is then allowed to cool slowly
in a chamber at 200°C with an average convection heat transfer
coefficient of h=75W/m’.°C. Determine the temperature at the
center of the shaft 30min after the start of the cooling process.
Also determine the heat transfer per unit length of the shaft
during this time period.

A long cylindrical wood log [k=0.16W/m.°C and ¢=1.28x10
7111"'/S]is: 12cm in diameter and is initially at a uniform
temperature of 10°C. It is exposed to hot gases at 540°C in a
fireplace with a heat transfer coefficient of 12W/m>.°C on the
surface. If the ignition temperature of the wood is 420°C,
determine how long it will be before the log ignites.

A long cupper bar of radius 8cm, is initially came out of oven at
a uniform temperature of 600°C. suddenly exposed to
environment at a temperature of 50°C, with a heat transfer
coefficient between the bar and the fluid is 500W/m>°C.
calculate the time for the center temperature and surface
temperature that reach 325°C.

Sphere

4.43

4.44

A solid aluminum sphere of diameter 10cm is initially at 250°C.
Suddenly it is immersed in a well-stirred bath at 125°C. The
heat transfer coefficient between the fluid and the sphere
surface is 600W/m”.°C. How long will it take for the center of
the sphere to cool to 150°C?

A solid aluminum sphere of diameter 8cm is initially at 120°C.
Suddenly its surface is lowered to 20°C. Determine the center
temperature of the sphere 5S lowering the surface temperature.



4.45

4.46

4.47

4.48

An 9cm diameter potato, initially at a uniform temperature of 4,51 A copper short bar 2.5cm-3cm-5cm is initially at a uniform

25°C, is suddenly dropped into boiling water at 100°C. The heat
transfer coefficient between the water and the surface of the
potato is 5000W/m”.°C. Assume the thermal properties of potato
to be [a=1.5x10'71112/S and k=7W/m.°C]. Determine the time
required for the center temperature of the potato to reach 75°C.
A copper ball [¢=1.1x10"*m?%S and k=380W/m.°C] 5cm in
diameter is initially at a uniform temperature of 150°C. It is
suddenly dropped into a coolant pool at 20°C. The heat transfer
coefficient between the coolant and the ball is 400W/m>.°C.
Determine the center temperature of the ball 90S after exposure
to the coolant. Calculate the energy removed from the ball
during the time period.

Consider an 8cm diameter orange that is initially at 15°C. A
cold front moves in one night, and the ambient temperature

suddenly drops to -6°C, with a heat transfer coefficient of 4.54

15W/m?°C. Using the properties of water for the orange and
assuming the ambient condition to remain constant for 4h
before the cold front moves out, determine if any part of the
orange will freeze that night.

A steel sphere 10cm in diameter is suddenly immersed in a tank
of oil at 15°C. The initial temperature of the sphere is 225°C:
h=4500W/m”.°C. How long will it take the center of the sphere
to cool to 120?

Transient Heat Conduction In Multidimensional System

4.49

4.50

A long steel bar 5 by 10 cm is initially maintained at a uniform
temperature of 300°C. It is suddenly subjected to a change such
that the environment temperature is lowered to 25°C. Assuming
a heat transfer coefficient to be 25W/1112.°C, estimate the time
required for the center temperature to reach 100°C.

A steel bar 2.5cm square and 7.5cm long is initially at a
temperature of 250°C. It is immersed in a tank of oil maintained
at 30°C. The heat transfer coefficient is 600W/m?°C. Calculate
the temperature in the center of the bar after 100S.

4.52

4.55

4.56

temperature of 500°C . It is immersed in the tank of water
maintained at 20°C. the heat transfer coefficient is 480W/m?.°C.
Calculate the temperature at the center of each face 2min after
the starting of cooling.

A cube of aluminum 12cm on each side is initially at a
temperature of 400°C and is immersed in a fluid at 100°C. the
heat transfer coefficient is 800W/m>°C. Calculate the
temperature at the center of one face after 1.5min.

A short concrete cylinder 20cm diameter and 30cm long is
initially at 25°C. It is allowed to cool in an atmospheric
environment in which the temperature is 0°C. Calculate the time
required for the center temperature to reach 7°C if the heat
transfer coefficient is 20W/m>.°C.

A semi-infinite aluminum cylinder of a diameter of 10cm is
initially at uniform temperature of 500°C. it is exposed suddenly
to air stream of a temperature 50°C. The heat transfer
coefficient between the cylinder and the fluid is 2000W/m?.°C.
Determine the temperature at the center line and deep Scm from
the finite end 2min after start cooling.

A 4.0-cm square bar of aluminum is initially at 450°C and is
suddenly exposed to a convection environment at 100°C with
h=1200W/m?°C. find the temperature of its face center 100S
after the start of cooling.

An cube of aluminum 12cm each side is initially at a
temperature of 400°C. It is suddenly immersed in a tank of oil
maintained at 80°C. The convection coefficient is
1200W/m>.°C. Calculate the temperature at the center of one
face and the mid point at one edge and one corner after a time of
one min. also calculate the amount of heat transfer.




