Bonding of Atoms into Solid Structures

- Primary Bond Types

' Jonic
v (ovalent (semiconductors)—
v Metallic (metals)

v Mixed 1onic + covalent  (ceramics)

- Secondary Bond
v Polar or van der Waals - _l



Bonding Types for various Materials
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Ex: NaCl . Ironically Bonded Solid



Covalent Bonding

Sharing of electrons to achieve
“stable electronic configuration”

Small electronegativity

Bond energy; weak to strong

Directional bond; between
specific atoms in specific
directions
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Covalent Bonding in Polymers
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Metallic Bonding

_ Eletram <lead from valenos 3o roas

Secondary (van der Waals) bonding

Ll I

s Physical bonds, not chemical

» Bond energy is very weak compared to others
s Exists between almost all atoms and molecules
» Arise from atomic or molecular dipoles

Secondary bonding of water molecules




Classification of engineering materials

Tool and die teels ~ Titanium
Cations ~ Tengsten
(Others



Lecture 2
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CRYSTALLINE SOLIDS

3.2 FUNDAMENTAL CONCEPTS

SOLIDS
|

AMORPHOUS CRYSTALLINE
Atoms in an amorphous Atoms in a crystalline solid
solid are arranged are arranged in a repetitive
randomly- No Order three dimensional pattern

Long Range Order

Many CNgaiics are Blline soO
Some polymers are crystalline solid




* Unit cell -- smallest grouping which can be
arranged in three dimensions to create the
lattice. Thus the Unit Cell is basic structural
unit or building block of the erystal structure




Unit cell & Lattice

(a)

(c)

Ficure 3.1  For the
face-centered cubic crystal
structure: (a) a hard
sphere unit cell
representation, (b) a
reduced-sphere unit cell,
and (¢) an aggregate of
many atoms. (Figure ¢
adapted from W. G.
Moffatt, G. W. Pearsall,
and J. Wulff, The Structure
and Properties of
Materials, Vol. 1, Structure,
p.- 51. Copyright © 1964 by
John Wiley & Sons, New
York. Reprinted by
permission of John

Wiley & Sons, Inc.)

Lattice

Unit Cell




3.4 METALLIC CRYSTALS

* Tend to be densely packed.

* Have several reasons for dense packing:

-Typically, only one element is present, so all atomic
radii are the same.

-Metallic bonding is not directional.

-Nearest neighbor distances tend to be small in
order to have lower bonding energy.

e Have the simplest crystal structures.
LLet us look at three such structures...

SC structure




BODY CENTERED CUBIC STRUCTURE (BCC)

Cr, Fe, W, Nb, Ba, V
e ——

FACE CENTERED CUBIC STRUCTURE (FCC)

= Ficure 3.1 For the
— A T face-centered cubic crystal
= 8\ @, ) structure: (a) a hard
sphere unit cell
representation, (b) a
reduced-sphere unit cell,
and (c) an aggregate of
~ many atoms. (Figure ¢

” adapted from W. G.
Moffatt, G. W. Pearsall,
and J. Wulff, The Structure
and Properties of
Materials, Vol. 1, Structure,
p. 51. Copyright © 1964 by
John Wiley & Sons, New
York. Reprinted by
permission of John
Wiley & Sons, Inc.)




HEXAGONAL CLOSE-PACKED STRUCTURE HCP

(®)

(a)
Ficune 3.3 For the hexagonal close-packed crystal structure, (a) a reduced-
sphere unit cell (@ and ¢ represent the short and long edge lengths, respectively),
and (b) an aggregate of many atoms. (Figure b from W. G. Moffatt, G. W. Pearsall,
and J. Wulff, The Structure and Properties of Materials, Vol. 1, Structure, p. 51.
Copyright © 1964 by John Wiley & Sons, New York. Reprinted by permission of
John Wiley & Sons, Inc.)

Mg, Zn, Cd, Zr, Ti, Be

Number of atgms per unit cell

| BCC 1/8 corner atom x 8 corners + 1 body center atom
=2 atoms/uc

FCC 1/8 corner atom x 8 corners + %2 face atom x 6 faces
=4 atoms/uc

HCP 3 inside atoms + /2 basal atoms x 2 bases + 1/ 6
corner atoms X 12 corners

=6 atoms/uc

o =




Relationship between atomic radius and edge

ler@hs

For FCC: a=2Rv2
For BCC: a=4R /V3
For HCP a=2R

c/a=1.633 (for ideal case)

Noze: c/aratio could be less or more than the ideal value of
1.633

Face Centered Cubic (FCC)

O

2ao=4r oo
eg.i




Body Centered Cubic (BCC)

O
3ao=ar

Coordina@')n Number

The number of touching or nearest neighbor
atoms

SCis 6
BCCis 8
FCCis 12
HCP is 12




ATOMIC PACKING FACTOR

Volume of atoms in unit cell*

APF = -
Volume of unit cell

*assume hard spheres

* APF for a simple cubic structure = 0.52

T volume

a atoms <« atom
—. 4 3
L R=0.5a unit cell 1 ; n (0.5a)
APF =
close-packed directions ad «_ volume
contains8x 1/8= unit cell

1 atomiunit cedl

ATOMIC PACKING FACTOR: BCC

b APF for a body-centered cubic structure = 0.68

a=4R /N3

Unit cell contains:
1+8x1/8
= 2 atoms/unit cell

atoms 4
wnitcell ™ 2 — 7 ([3a/4)3 <

volume
atom

APF =

a3 o volume

unit cell




FACE CENTERED CUBIC STRUCTURE (FCC)

» Close packed directions are face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded
differently only for ease of viewing.

e Coordination#=12

ATOMIC PACKING FACTOR: FCC

* APF for a face-centered cubic structure=0.74

a=2R\?2

Unit cell contains:
6x1/2+8x1/8
= 4 atoms/unit cell

atoms 3 volume
unitcell ™ 4 —n (2al4)° *+— atom
APF =
3 volume
av «

unit cell




3.5 Density Computations

o Den31 of a material can be determined theoretically
from the knowledge of its crystal structure (from its
Unit cell information)

* Density= mass/Volume

o Mass is the mass of the unit cell and volume is the unit
cell volume.

» mass = ( number of atoms/unit cell) “n” x mass/atom

* mass/atom = atomic weight “A”/Avogadro’s Number
“NA”

* Volume = Volume of the unit cell “V,”

“_.»

THEORETICAL DENSITY
# aboemafundd eell\A Filiesrmiles weeigglilt {epfnnel
p=_ A

Volumefundd nel’!fJVc NA ¥__Avogadro’s number
{emSfunit cell) (6.023 x 1023 atomalmol)




Example problem on Density Computation

Compute the density of Copper

Given: Atomic radius of Cu = 0.128 nm (1.28 x 108 cm)
Atomic Weight of Cu = 63.5 g/mol
Crystal structure of Cu is FCC

Solution: p=nA/VN,

n=4

V= a3 = (2RV2)3 = 16 R3V2

N, = 6.023 x 1023 atoms/mol

p =4X63.5g/mol /16 V2(1.28 x 108 cm)3x 6.023 X 103
atoms/mol

Ans = 8.98 g/cm3

3.6 Crystal Systems

Since there are many different possible crystal structures, it
is sometimes convenient to divide them into groups
according to unit cell configurations and/or atomic
arrangements.

One such scheme is based on the unit cell geometry, i.e. the
shape of the appropriate unit cell parallelepiped without
regard to the atomic positions in the cell.

Within this framework, an x, y, and z coordinate system is
established with its origin at one of the unit cell corners;
each x, y, and z-axes coincides with one of the three
parallelepiped edges that extend from this corner, as
illustrated in Figure.



The Lattice Parameters

O

Lattice parameters
a, b, c, a, B,y are called the lattice
Parameters.

3.7 Point Coordinates in an Orthogonal
Coordinate System Simple Cubic




3.8 MILLER INDICES FOR CRYSTALLOGRAPHIC
PLANES

 Miller Indices for crystallographic planes are
the reciprocals of the fractional intercepts
(with fractions cleared) which the plane makes
with the crystallographic x,y,z axes of the three
nonparallel edges of the cubic unit cell.

e 4-Step Procedure:

1. Find the intercepts that the plane makes with the three
axes x,y,z. If the plane passes through origin change
the origin or draw a parallel plane elsewhere (e.g. in
adjacent unit cell)

o.  Take the reciprocal of the intercepts
Remove fractions
4.  Enclosein ( )

Crystallographic Planes

4

example
1. Intercepts

3.  Reduction 1 1 0 ’
a*—l/ b
4. Miller Indices  (110)

P Q

b c
1

X
example a b c i
1. Intercepts 1/2 0 0 C
2 0 0
3. Reduction 2 0 0
4.  Miller Indices  (200) a b




Origin

[110]




Atomic Arrangement on (110) plane in FCC

@)

C Ficure 3,10 (a) Reduced-
() q sphere FCC unit cell with
A ﬂ— DB\ ,
‘d M (110) plane. (b) Atomic
| - packing of an FCC (110)
. I P plane. Corresponding atom
! :O O DAEAF positions from (a) are
13 indicated.

(b)

Fioeme 5,11 (o) Reduced-sphere BCC unit B

cell with 110) plane, (b) Atomic packing of
aBCC (110) plane. Corresponding atom !
posiions from () are indicate




Ficure 3,12 (a) Reduced-
sphere FCC unit cell with

! the [110] direction
indicated. () The bottom

face-plane of the FCC unit
cell in (a) on which is

' shown the atomic spacing
in the [110] direction,

through atoms labeled
X, Y, and Z.

(b)
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¢ Linear Density “LD”

1s defined as the number of atoms per unit
length whose centers lie on the direction vector
of a given crvstallographic direction.

_ No. of atoms centered on direction

Length of direction vector




Linear Density

LD for [110] in BCC.

# of atom centered on the direction
vector [110]

=1/2+1/2 =1

fa) (1} fe)

3 3 — Ficvre 5.2 For the body-centered cubic cry . (a) a hard sphere
Length Of dl rGCtl O n Ve Cto r [ 1 1 O ] - ‘\/ 2 unit cell representation, (b) a mdmﬁ»wmmgale of
many atoms. (Figure ¢ from W. G. Moffatt, G. W. Pearsall, and J. Wulff, The
Structure and Properties of Materials, Vol. 1. Structure, p. 51. Copyright © 1964

— R ,\/ by John Wiley & Sons, New York. Reprinted by permission of John Wiley &
a —_ 4 3 Sons Inc.)

1 V3

1
LD= = e
J2a  J2(4R/3) 24R

Linear Density
e LD of [110] in FCC @

# of atom centered on the direction
vector [110] = 2 atoms

Length of direction vector [110] = 4R
LD =2 /4R
LD =1/2R

Linear density can be defined as

reciprocal of the repeat distance

‘r —
LD = 1/r ‘&,




Planar Density

S

"""  Planar Density “PD”

is defined as the number of atoms per unit area that
are centered on a given crystallographic plane.

No of atoms centered on the plane

PD =

Area of the plane

Planar Density of (110) plane in FCC

—#of atoms centered on the- @ ———————————————————
plane (110)

=4(1/4) + 2(1/2) = 2 atoms

Area of the plane
= (4R)(2R V 2) = 8R22

(111) Plane in FCC

2atoms 1

PD,, = —
"0 8R2J2  4R%V2




Hexagonal Close-Packed Structure (HCP)

* ABAB... Stacking Sequence
« 3D Projection « 2D Projection

Asites Top] layer

I
I
I
[

.
l

: B sites Middle layer
Asites Bottom layer
[-a~
« Coordination# =12 6 atoms/unit cell
* APF =0.74 ex: Cd, Mg, Ti, Zn




Crystalline and Noncrystalline Materials
Single Crystals

+ For a crystalline solid, when the periodic and repeated
arrangement of atoms is perfect or extends throughout
the entirety of the specimen without interruption, the
result is a single crystal.

o All unit cells interlock in the same way and have the same
orientation.,

* Single crystals exist in nature, but may also be produced
artificially.

* They are ordinarily difficult to grow, because the
environment must be carefully controlled.

+ Example: Electronic microcircuits, which employ single
crystals of silicon and other semiconductors.



Polycrystalline Materials

3.13 Polycrytalline Materials 3%
Polycrystalline = crystalline solids |- %
composed of many small o0

crystals or grains. Dgg ¢
Various stages in the solidification : % Eﬁ]

a) Small crystallite nuclei Growth
of the crystallites.

b) Obstruction of some grains that
are adjacent to one another s
also shown,

¢) Upon completion of u
solidification, grains that are T

adjacent to one another is also 7 |
shown.

d) Grainstructure as it would A
appear under the microscope.

@




* Defects in Solids

» 0D, Point defects

v vacancies

v Interstitials

v impurities, weight and atomic composition
» 1D, Dislocations

v edge

v screw

~ 2D, Grain boundaries

Why are defects important?

Bonding
+

Crvstal Structure I Properties

+

Defects

Defects have a profound impact on the various properties of
materials:

Production of advanced semuconductor devices require not
only a rather perfect S1 crystal as starting matenial, but also
mvolve mtroduction of specific defects in small areas of
the sample.

Defects are responsible for color (& price) of a diamond
crystal.

Forging a metal tool introduces defects ... and mcreases
strength of the tool.



Types of Defects

Defects may be classified into four categories depending on
their dimension:

> 0D, Point defects: atoms nussing or in uregular places
in the lattice (lattice vacancies, substitutional and interstitial
impurities, self-interstitials)

> 1D, Linear defects: groups of atoms in wregular
positions (e.g. screw and edge dislocations)

> 2D, Planar defects: the interfaces between
homogeneous regions of the matenial (e.g. grain
boundaries. stacking faults. external surfaces)

Grain boundaries

Point Defects: Vacancies

00000

8 I.-"_“w,IO Vacancy = absence of an atom
O O"“—F"’ = from its normal location in a
A

- perfect crystal structure
00000
00000

Vacancies are always present m crystals and they are

particularly numerous at hugh temperatures, when atoms
are frequently and randomly change their positions leaving
behind empty lattice sifes (vacancies).



Other point defects: self-interstitials, impurities

O O OOO O OO Schgmatic repI_'eseuTaTinn
f different defects:
OO@OOOOO 0 ' eren an‘r acts
p- (1) vacancy;
O wa_j O O (2) self-interstitial;
OO(JOOC_/ UO (3) nterstitial impunty;
O .@OOOO O O (4,5) substitutional impurities

(— DO OO e arrows show the loc
S&O /OO gtr}:esses iﬂirn];ucedthbyl ﬂlai
oele

() point defects

OC Due to the local stresses
()(O)() introduced by point defects,

O'Og OC’Q OC they can feel each other
mteract) and feel external

C WGIDQQ)OG Et[‘egses_J

The inferactions can give a directionality to otherwise

random jumps of atoms.

Self-interstitials:

Self-nterstitials in metals introduce large distortions in the
surrounding lattice = the enerpy of self-interstitial
formation 1s ~ 3 times larger as compared to vacancies (Q.
~ 3xQ,) = equilibrium concentration of self-interstitials 1
very low (less than one self-interstitial per cm’ at room T).



Impurities
Impurities - atoms which are different from the host

= All real solids are impure. Very pure metals 99 9999%
- one impurity per 10° atoms
# May be intentional or unintentional

Examples: carbon added in small amounts to on
makes steel, which 1s stronger than pure won. Boron
added to silicon change 1ts electrical properties.

» Alloys - deliberate mixtures of metals

Example: sterling silver 1s 92.5% silver — 7.5% copper
alloy. Stronger than pure silver.

substitutional impurity interstitial impurities

Interstitial Solid Solutions

Carbon interstitial
atom in BCC iron

/

Interstitial solid solution of C in «-Fe. The C atom is small
enough to fit, after introducing some strain into the BCC
lattice.




Dislocations—Linear Defects

Dislocations are linear defects: the interatomic bonds are
significantly distorted only in the immediate vicinity of the
dislocation line. This area is called the dislocation core.
Dislocations also create small elastic deformations of the
lattice at large distances.

Dislocations are very important in mechanical properties of
material (Chapters 6, 7. 8). Introduction/discovery of
dislocations 1 1934 by Taylor, Orowan and Polyam
marked the beginning of our understanding of mechanical
properties of materials.

Description of Dislocations—Burgers Vector

To describe the size and the direction of the lattice
distortion caused by a dislocation we should mmtroduce so-
called Burgers vector b. To find the Burgers vector, we
should make a circuit firom from atom to atom counting the
same number of atomic distances in all directions. If the
circit encloses a dislocation it will not close. The vector
that closes the loop is the Burgers vector b.

Dislocations shown above have Burgers wector directed
perpendicular to the dislocation line. These dislocations
are called edge dislocations.



Shear occurs by dislocation movement producing permanent

(plastic) deformation by “slip”
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Edge and screw dislocations

Dislocations shown in previous slide are edge dislocations.
Thewy have Burgers wvector directed perpendicular to the
dislocation line_

There 1s a second basic type of dislocation, called screw
dislocation. The screw dislocation i1s parallel to the
direction in which the crystal 1s being displaced (Burgers
vector i1s parallel to the dislocation line).




Where do dislocations come from 7

The number of dislocations 1n a material 1s expressed as the
dislocation density - the total dislocation length per unit
volume or the mumber of dislocations intersecting a wmt
area. IDislocation densities can vary from 10° cm™? in
carefully solidified metal crystals to 10 em™” in heavily
deformed metals.

Most crystalline matenals, especially metals., have
dislocations in their as-formed state, mainly as a result of
stresses  (mechanical, thermal ) associated with the
formung process.

The number of dislocations
INCTeasas dramatically
during plastic deformation
(Ch.7). Iislocations spawn
from existing dislocations,
grain boundaries & surfaces

This picture is a snapshot from
sinmilation of plastic deformation
in a foo single crystal (Cu) of
linear dimension 15 micrometers.

Atomistic simulation of crack propagation




Planar (interfacial) defects

External Surfaces

Surface atoms have have unsatisfied atomuic bonds, and
higher energies than the bulk atoms = Surface energy, v
(T/'m?>)

» Mimimuzation of surface areas reduces the energy of the
system (e.g. liquid drop)

= Solid surfaces can “reconstruct™ to satisfy atomic bonds
at surfaces.

Grain Boundaries
Pnlj,.rc:qrsta]lme material comprised of many small crystals
Or grains. The grains have different crystallographic
ontentation.  There exst atomuc musmatch within the
regions where grains meet. These regmﬂs are called grain
boundaries.
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Grain Boundary
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