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THERMAL DEFORMATIONS AND STRESSES

Introduction

It is well known that changes in temperature cause dimensional changes in a
body: An increase in temperature results in expansion, whereas a temperature
decrease produces contraction. This deformation is isotropic (the same in every
direction) and proportional to the temperature change. The strain caused by
temperature change (°C) is denoted by a and is called the coefficient of thermal
expansion. Thermal strain caused by a uniform increase in temperature A7 is

Eth == CZAT

and
Oin = a(AT)L

Example 1:
A steel rod of length L and uniform cross sectional area A is secured between
two walls, as shown in the figure. Use L=1.5m, E=200 GPa, a = 11.7 X
1076 /°C and AT = 80 °C. Calculate the stress for a temperature increase of

AT for:

a) The walls are fixed.
b) The walls move apart a distance 0.5mm.

L
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Solution:

a) 6y — 6 =0

(AT)L RL _
@ AE

. R=AE o (4T)

o === Ea(AT)

=200 x 10° x 11.7 X 107® x 80 = 187.2 MPa (Answer)

L

<R
|t— R

b) 8tn — 6r = b

AT)L kL =4
R=AE (o AT - 2%)
The compressive stress is then,
R Sw
0 =2=E (aaT - 22)
0.5x1073

=200 x 10° (11.7 x 1076 x 80 — ) = 120.52 MPa (Answer)

Example 2:
A rigid block having a mass 5 Mg is supported by three rods symmetrically

placed, as shown in the figure. Determine the stress in each rod after a
temperature rise of 40 °C. Use E<=200 GPa, as=11.7 pm/m-°C, A;=500 mm?,
Ex=83 GPa, a,p=18. 9 um/m-°C, and A,=900 mm?.
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|
=
p—] % —
L=0.5m| 3 3 L=0.5m
7] [7p]
L=1m
\ 4
W=5000x9.81
Solution:
[ — <%> —_—
Initial
level
________ e ——————fr—
| I ((ST)qt | I ((S[)br | I
I . -+
[ 6p) Final I
1P st 11 yOPor level 1

Deformation

Sths + 6Ps = Sthb + 5Pb

Pg¢Lg _ PprLp
a,(AT)L, + AE a,(AT)L, + e
11.7 x 1076 X 40 X 0.5 + Porx0.3

_ Pp-X1
st =189 x%x107°x40x 1+ br
500X10~6x200%x10° 900X10~6x83x10°

Simplifying the above equation,
P, —2.6P,, =104 x 103N 1)
Statics (Free Body Diagram, F.B.D)

2P, + P, = 5000 X 9.81 = 49.05 x 103 N )
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Solving equation (1) and (2),

P;; = 37.0kN and P,,, = —25 KN (compression)

Stresses
F P 37%x103
o = -, hence o, =-L=—""——=74MPa (Answer)
A Ag 500x10~6
P 25%103
o, === — = 27.8 MPa (Answer)
Ap 900%10~6
Example 3:

For assembly shown in the figure. Determine the stress in each of the two vertical
rods if the temperature rises 40 °C after the load P=50 kN is applied. Neglect the
deformation and mass of the horizontal bar AB. Use E,=70 GPa, a,=23.0

um/m-°C, A;=900 mm?, Es=200 GPa, a,s=11.7 um/m-°C and A;=600 mm?.

(o)
{ )
Aluminum Steel
3m 4m
A
[ ] (J
) o © 8
7777 3m 3m 3m

Solution:

YM,=0. 50Xx103X9—F X6—F,x3=0

2F, + F, = 150 x 103 (1)
; 2 [r
O s 5
e [a
T ¥ 50 kN

8s _ Sa _
z = ? - 65 = 26(1
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(AT)Lg + Bils _ 2( (AT)L, + F“L“)
aS S ASES - aa a AaEa

11.7 x 1076 X 40 X 4 + T
600Xx107°x200x10

2(23x 1076 x 40 x 3 + ——22 )
900X107°%x70x10

F, — 2.857F, = 109.44 kN (2)
Solve (1) and (2) for F; and F,,
F, =80.4kNand F, = —10.17 kN

Stresses

F, 80.4x103
0, =— = ————— = 11.3 MPa (Answer)
Ag 600x10~°

__ Fg _ 10.17x103

= Sooxioe = 134 MPa (Answer)

Example 4:

A rod is composed of three segments, as shown in the figure. Compute the stress
induced in each material by a temperature drop 30 °C if (a) the walls are rigid and
(b) the walls spring together by 0.3mm. Assume E,=70 GPa, a,=23.0 um/m-°C,
A,=1200 mm?, Ep=83 GPa, ap=18.9um/m-°C, A,=2400 mm? E.=200 GPa,
as=11.7 pm/m-°C and A;=600 mm?,

e 800 mm -l 500mm _ 400 mm,_ P

2 7

7 L

/ —

:_-: Bronze Aluminum Steel '2

y A=2400 mm? A=1200 mm?  A=600 mm?
E=83 GPa E=70 GPa E=200 GPa

Solution
a) X(6p+6p)=0
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F x0.8
189 x 107® x 30 x 0.8 — 23 X 107 x 30 x 0.
8 0 30 x 0.8 24oo><1o—6><83><1o9+ 3 x 10 30 x 0.5
Fx05 +11.7x 107 x 30 x 0.4
1200 X 10-6 x 70 x 109 ' '
F x 0.4 _ 0 e
600 X 10~6 x 200 x 10°
F=70.592 kN
Stresses
F 70.592x103
g, == =220 — 11765MPa  (Answer)
Ag 600x10
F 70.592x10°
0, =2 =120 — 5882 MPa  (Answer)
Ag 1200%10

x 3
Fp _ 70592X19 _ 99 41 MPa (Answer)

0, =
b ™ 4, 7 2400x1076

b) Y(6:, +6F) =03x1073

F 0.8

189 % 107® x 30 X 0.8 — 23 x 107 x 30 x 0.
8.9 0 30 x 0.8 2400><10—6><83><109+ 3 0 30 x 0.5

Fx05 +11.7%x 107 x 30 x 0.4
1200 X 1076 x 70 x 10° ' |
F x 0.4 _3
- =03x1
600 X 10~6 x 200 x 109 0.3+10
F=49.15KN
Stresses
F 49.15x103
g, == =220 _ 8191 MPa  (Answer)
Ag 600x10
F 49.15%103
0 =& =2220 — 4095MPa  (Answer)
Ag 1200x10

x 3
=D - BIM0 _5047MPa  (Answer)

b ™ 4, 7 2400x107

Example 5:
A rigid horizontal bar of negligible mass is connected to two rods as shown in the

figure. If the system is initially stress-free; determine the temperature change that
will cause a tensile stress of 60 MPa in the steel rod. Assume Es=200 GPa,

as=11.7 um/m-°C and As=900 mm?, E,=83 GPa, 0,,=18.9um/m-°C, A,=1200 mm?,
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L

Steel
3m

ayyiyoll duniall mud
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3m

‘ 2m
Ai]}i g

Bronze
2m

Solution:
Os = 5 - F; = Ago;
Statics
>M, =0: F,x5=F, %2
5
o Fb = EF‘;

Since g, = 60 MPa, then F, = Ago, = 900 X 107° X 60 X 10° =

Use equation (1), F, = 135 kN

Deformation

5 &
57270 =30
FpLy
AT)L =
ap( )b"‘AbEb >
135x103%2

18.9%x 107 X AT X 2 + =

1200x10~6%x83%x10°

;(11.7 X 1076 X AT X 3 +

AT =7

5 E.L
=2 (aS(AT)LS +

1)

54 kN,

S S)
ASES

54x103x3 )
900x107°x200x10°
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The following example from:
= Beer F.P., Johnston E.R., Mechanics of Materials, McGraw-Hill, New York,
2012.

CE‘L

=

045 m—T‘”mj SAMPLE PROBLEM 2.4
ﬁ

The rigid bar CDE is attached to a pin support at E and rests on the 30-mm-
dmmetet brass cylinder BD. A 22-mm-diameter steel rod AC passes through
a hole in the bar and is secured by a nut which is snugly fitted when the
temperature of the entire 1ssemblv is 20°C. The temperature of the brass
cylinder is then raised to 50°C while the steel rod remains at 20°C. Assum-
ing that no stresses were present before the temperature change, determine
the stress in the cylinder.

0.9 m

Rod AC:  Steel Cylinder BD: Brass
¥ A E = 200 GPa E = 105 GPa
a =117 X 107%°C a =209 x 107%°C

SOLUTION

Staties. Considering the free body of the entire assembly. we write
FNSMp=0:  Ry(0.75m) — Rg(0.3m) =0 R, = 04R, (1)

Deformations. We use the method of superposition, considering Ry as
redundant. With the support at B removed, the temperature rise of the cylinder
causes point B to move down through 8;. The reaction Rg must cause a deflec-
tion 8; equal to &7 so that the final deflection of B will be zero (Fig. 3).

0.45 <~ . v
F_ L5 m 0.3 m Deflection 6;. Because of a temperature rise of 50° — 20° = 30°C,

the length of the brass cylinder increases by 8.

= L(AT)a = (0.3 m)(30°C)(20.9 X 10~%°C) = 188.1 X 10 °m |

Deflection 8. We note that 8, = 0.46¢ and &, = 6p + g/p.
R,L R4(0.9 m)

8¢ = = = 1184 X 107°R
T AE T 17(0.022 m)’(200 GPa) al

8p = 0408, = 0.4(11.84 X 10 °R,) = 4.74 X 10 °R, 1
RyL R(0.3 m)
8sp = =1 P e
AE  3w(0.03 m)“(105 GPa)
We recall from (1) that Ry = 0.4Rgz and write
8, = 8p + Spp = [4.74(0.4R5) + 4.04R5]10°° = 594 X 10 °R; 1
But 8; = 8;: 188.1 X 107%m = 5.94 x 107° R, Ry = 31.7kN
Rj 31.7 kN

Stress in Cylinder: oy, =—=-—"""—"— o5 =448 MPa
Y Fooa $m(0.03 m)? !

=404 x 107°Ry 1
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TORSION OF THIN-WALLED TUBES

Consider the thin-walled tube subjected to the torque T shown in Figure 1(a). We
assume the tube to be of constant cross section, but the wall thickness t is allowed
to vary within the cross section. The surface that lies midway between the inner
and outer boundaries of the tube is called the middle surface. If t is small
compared to the overall dimensions of the cross section, the shear stress =
induced by torsion can be shown to be almost constant through the wall thickness
of the tube and directed tangent to the middle surface, as shown in Figure 1(b). It
Is convenient to introduce the concept of shear flow q, defined as the shear force

per unit edge length of the middle surface. Thus, the shear flow is

1)

Middle surface
(@)

Figure 1: (a) Thin-walled tube in torsion; (b) shear stress in the wall of the tube;

(c) shear flows on wall element.
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The shear flow is constant throughout the tube, as explained in what follows. -
Considering the equilibrium of the element shown in Figure 1(c). In labeling the ’w
shear flows, we assume that g varies in the longitudinal (x) as well as the w[,
circumferential (s) directions. Thus, the terms (dq/dx) dx and (dq/ds) ds
represent the changes in the shear flow over the distances dx and ds, respectively.
The force acting on each side of the element is equal to the shear flow multiplied

by the edge length, resulting in the equilibrium equations

YE =0: (q+g—st)dx—qu=0
YE =0: (q+Z—de)ds—qu=0
which yield Z—Z = Z—z = 0, thus proving that the shear flow is constant throughout

the tube.

To relate the shear flow to the applied torque T, consider the cross section of
the tube in Figure 2. The shear force acting over the infinitesimal edge length ds
of the middle surface is dP = q ds. The moment of this force about an arbitrary
point O in the cross section is r dP = (q ds) r, where r is the perpendicular
distance of O from the line of action of dP. Equilibrium requires that the sum of

these moments must be equal to the applied torque T; that is,

T=¢ qrds (2)
where the integral is taken over the closed curve formed by the intersection of the

middle surface and the cross section, called the median line.

Median line — //
(length = §) Y f/
W /
Area=Ap— "0 7

~

Figure 2: Calculating the torque T on the cross section of the tube.
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Since g is constant, equation (2) can be written as T = qgﬁs rds. From 7/ ‘

1

Figure 2 it can be seen that dA, = 5T ds, where dAy is the area of the shaded

triangle. Therefore, gﬁs rds = 24A,, where Ay is the area of the cross section that

Is enclosed by the median line. Consequently, equation (2) becomes
T == ZAO q

from the shear flow is

q=—— (3)

0

The angle of twist of the tube cab found by equating the work done by the
shear stress in the tube to the work of the applied torque T. From Figure 3, the

work done on the element is,

dU = % (force X distance) = % (g ds X ydx)
where q ds is the elemental shear force which moves a distance y dx, Figure 3.

Using Hooke’s law, i.e. y = % = q/(Gt), the above equation may be written as,

dU =L ds dx 4)
ds p3 s
dx dP = q ds
v dx

Figure 3: Deformation of element caused by shear flow.
Since g and G are constants and t is independent of x, the work U is obtained from

equation (4) over the middle surface of the tube,

U= gfoL (935 %) dx = % (565 %) ()
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Conservation of energy requires U to be equal to the work of the applied torque;

that is, U = T 6 /2. Then, using equation (3), equation (5) will be,

(%)2%(565 %) - %TQ

from which the angle of twist of the tube is

0= 421:43 (fﬁs %) (6)

If t is constant, we have gﬁs (ds/t) = S/t, where S is the length of the median

line. Therefore, equation (6) becomes

TLS TLS

6 = = (7)

T 4GAZt 240G

For closed sections which have constant thickness over specified lengths but

varying from one part of the perimeter to another:

0=— (Z+2+2 4 etc.) (8)
4642 \t; "t 3

Thin-Walled Cellular Sections

The above theory may be applied to the solution of problems involving cellular

sections of the type shown in Figure 4.

ATi B i» E
.
S -
D C F
Figure 4: Thin-walled cellular section.
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Assume the length CDAB is of constant thickness t; and subjected therefore '
to a constant shear stress t1. Similarly, BEFC is of thickness t, and stress . with %‘o
BC of thickness t; and stress ta.

Considering the equilibrium of complementary shear stresses on a

longitudinal section at B, it follows that

d1 =42+ q3
or
T1ty = Taty + T3l3 9)
The total torque for the section is then found as the sum of the torques on the

two cells by application of equation (3) to the two cells and adding the result,

T = quAl + ZquZ = Z(TltlAl + thzAz) (10)

The angle of twist will be common to both cells, i.e.,

9 _i(1151+r353) :i(1252—1353) (11)

T 26 Ay 2G Ay
where S;, S, and S; are the median line perimeters CDAB, BEFC and BC

respectively.

Note: The negative sign appears in the final term because the shear flow along

BC for this cell opposes that in the remainder of the perimeter.
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Example 1:
A thin-walled member 1.2 m long has the cross-section shown in the figure.
Determine the maximum torque which can be carried by the section if the angle

of twist is limited to 10°. What will be the maximum shear stress when this

maximum torque is applied? For the material of the member G = 80 GN/m?,

{
IOmn; Imm l
[ :
r 25 mm ]
Solution:
Now, perimeter of median line = s = (2 x 25 + 27 x 10) mm
= 112.8 mm
area enclosed by median = A = (20 x 25 + 7 x 10?) mm?
= 814.2 mm?
TLs
Fromeqn (7 ), 8=
o (7) 442 Gr
10 x 27 T x1.2x112.8 x 102

360  4(814.2 x 106)2 x 80 x 10° x 1 x 10-3
1.e. maximum torque possible,

_ 207 x 4 x 814.2% x 80 x 107°

T =
360 x 1.2 x 112.8 x 103
=273 Nm
T
From eqn. (3 ), Tmax = v

B 273
T 2x8142x 10" x 1 x 103

= 168 x 10° = 168 MN/m?

The maximum stress produced is 168 MN/m?.
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Example 2:
The median dimensions of the two cells shown in the cellular section of the figure

below are A; =20 mm x 40 mm and A, = 50 mm x 40 mm with wall thicknesses

t=2mm, t; = 1.5 mm and t; = 3 mm. If the section is subjected to a torque of
320 Nm, determine the angle of twist per unit length and the maximum shear
stress set up. The section is constructed from a light alloy with a modulus of
rigidity G = 30 GN/m?.

ATL_B T N\
f [ lf?: 2
. = |
R F
Solution:
From egn. (10),
320 = 2(7; X 2 X 20 X 40 + 7, X 1.5 X 50 x 40) x 10~° (1)
From egn. (11),
2x30%x10°%x6 = m(rlmo +2%x20)1073 + 73 x40 x 1073) (2)
and,
2X30 X 10° X 0 = ————(7,(40 + 2 X 50)107% — 75 X 40 X 10%) (3)
Equating (2) and (3),
407, = 281, — 28715 (4)
From eqn. (9),
21, = 1.57, + 314 (5)

The negative sign indicates that the direction of shear flow in the wall of

thickness ts is reversed from that shown in the figure.
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Solving equations (1), (4) and (5) for t1, 12 and 13,
T, =27.6 MPa, 1, =38.6MPa and 13 =—0.9 MPa
The maximum shear stress present in the section is thus 38.6 MN/m? in the 1.5 e st

Weduncal ngneceng besertmest

mm wall thickness.

From eqgn. (3),

1x103
20x40%x10~6

2.592°

2x30x%x10°%x6 = (27.6 X (40 + 2 x 20) — 0.9 x 40)

~ 8 = 0.04525 rad.

The following example from:
= Pytel A., Kiusalaas J., Mechanics of Materials, 2" Edition, Cengage
Learning, Stamford, 2010.

Sample Problem 3.7

— /—‘CD An aluminum tubct 1.2 m long, has the semicircular cross sccti'on shown in the figure.
N\ If stress concentrations at the corners are neglected, determine (1) the torque that
. < causes a maximum shear stress of 40 MPa, and (2) the corresponding angle of twist
| B> of the tube. Use G = 28 GPa for aluminum.
5 le \_@ Solution
Part 1

Because the shear flow is constant in a prismatic tube, the maximum shear stress
occurs in the thinnest part of the wall, which is the semicircular portion with # = 2 mm.
Therefore, the shear flow that causes a maximum shear stress of 40 MPa is

q =1t = (40 x 10°)(0.002) = 80 x 10> N/m

The cross-sectional area enclosed by the median line is

2 7(0.025)%
Ll 8

= =0.9817 x 1073 m?

Ao =

which results in the torque—see Eq. (3.8a):
T =2A4pq = 2(0.9817 x 1073)(80 x 10%) = 157.07N - m Answer
Part 2

The cross section consists of two parts, labeled (1) and (2) in the figure, each having a
constant thickness. Hence, we can write

i 1 S S
%27—J dx-%—lJ dsfl-%—i
st nhls nls, 4] 5]

where S; and S are the lengths of the median lines of parts (1) and (2), respectively.

Therefore,
% b B par_ "[35’+2(25) — 55.94
st Hh b 2 3
and Eq. (3.9a) yields for the angle of twist
i s é .
o IL‘j; ds _ 157.07(1.2) __(s5.9)
4GAZ Js t 4(28 x 10°)(0.9817 x 10-3)*
= 0.0977 rad = 5.60 Answer
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TORSION OF CIRCULAR SHAFT

Introduction

In many engineering applications, members are required to carry torsional loads.
In this lecture, we consider the torsion of circular shafts. Because a circular cross
section is an efficient shape for resisting torsional loads, circular shafts are
commonly used to transmit power in rotating machinery. Derivation of the
equations used in the analysis follows these steps:

» Make simplifying assumptions about the deformation based on
experimental evidence.

= Determine the strains that are geometrically compatible with the assumed
deformations.

= Use Hooke’s law to express the equations of compatibility in terms of
stresses.

= Derive the equations of equilibrium. (These equations provide the
relationships between the stresses and the applied loads.)

Torsion of Circular Shafts

Consider the solid circular shaft, shown in the Figure 2.1, and subjected to a
torque T at the end of the shaft. The fiber AB on the outside surface, which is
originally straight, will be twisted into a helix AB’ as the shaft is twist through the
angle 6. During the deformation, the cross sections remain circular (NOT

distorted in any manner) - they remain plane, and the radius r does not change.
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Besides, the length L of the shaft remains constant. Based on these observations,
the following assumptions are made:

= The material is homogeneous, i.e. of uniform elastic properties throughout. ...

» The material is elastic, following Hooke's law with shear stress i
proportional to shear strain.

= The stress does not exceed the elastic limit or limit of proportionality.

= Circular cross sections remain plane (do not warp) and perpendicular to the
axis of the shaft.

= Cross sections do not deform (there is no strain in the plane of the cross
section).

= The distances between cross sections do not change (the axial normal strain
IS zero).

Figure 2.1: Deformation of a circular shaft caused by the torque T.

6, = DE =16 @

where the subscript s denotes shear, r is the distance from the origin to any
interested fiber, and @is the angle of twist.

From Figure 2.1,
yL =10
The unit deformation of this fiber is,
y=T=7 (2)

Shear stress can be determined using Hooke’s law as:
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T=G)/=G(%) 3

. 0
Note: since t = (GT)r = const.r, therefore, the K

conclusion is that the shearing stress at any
internal fiber varies linearly with the radial K

distance from the axis of the shaft.

For the shaft to be in equilibrium, the resultant of the shear stress acting on a cross
section must be equal to the internal torque T acting on that cross section. Figure
2.2 shows a cross section of the shaft containing a differential element of area dA
located at the radial distance r from the axis of the shaft. The shear force acting
onthisareaisdF = T dA, directed perpendicular to the radius. Hence, the torque

of dF about the center O is:

Figure 2.2: The resultant of the shear stress acting on the cross section.

T=[rdF =[rtdA 4)
Substituting equation (3) into equation (4),
T, =[r (%) rdA = % r2dA

Since[ r*dA = ], the polar 2" moment of area (or polar moment of inertia) of
the cross section
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. _ GO
_L]

Rearranging the above equation,

_TL

6 =
JG

(5)

where T is the applied torque (N.m), L is length of the shaft (m), G is the shear
modulus (N/m?), J is the polar moment of inertia (m*), and @ is the angle of twist
In radians.

From equations (5) and (3),

or

T=— (6)

Complementary
longitudinal shears

Polar Moment of Inertia

=  Solid Shaft |
Consider the solid shaft shown, therefore,

J=[r?dA= foR r2(2nrdr) = 2n foRr3dr

which yields,
4
r T

= 2n[—]% = =R*
J =2nl18 =3
or Figure 2.3: Shaft cross-section
] = md*

T 32
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= Hollow Shaft
The above procedure can be used for calculating the polar moment of
inertia of the hollow shaft of inner radius R; and outer radius R,,
] = 27rf§"r3dr = %(Rg —R})
or
J =+ (D3 =D}
= Thin-Walled Hollow Shaft
For thin-walled hollow shafts the values of D, and D; may be nearly equal,
and in such cases there can be considerable errors in using the above
equation involving the difference of two large quantities of similar value.

It is therefore convenient to obtain an alternative form of expression for the

polar moment of area. Therefore,
] = fOR 2nrd3dr =Y Qrrdr)r? =Y Ar?

where A = (2m r dr) is the area of each small element of Figure 2.3, i.e. J
is the sum of the Ar? terms for all elements.

If a thin hollow cylinder is therefore considered as just one of these
small elements with its wall thickness t = dr, then

] =Ar?=Qnrt)r?=2nr3t (approximately)

Notes: The maximum shear stress is found (at the surface of the shaft) by

replacing r by the radius R, for solid shaft, or by R, , for the hollow shaft, as

=2 =T, solid shaft

Tmax nR3  mD3

2TR _ 16TD,
n(R*-r%)  w(DE-D})

Tmax -

— hollow shaft
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Composite Shafts - Series Connection
If two or more shafts of different material, diameter or basic form are connected

together in such a way that each carries the same torque, then the shafts are said ... |

to be connected in series and the composite shaft so produced is therefore termed
series-connected, as shown in Figure 2.4. In such cases the composite shaft
strength is treated by considering each component shaft separately, applying the
torsion theory to each in turn; the composite shaft will therefore be as weak as its
weakest component. If relative dimensions of the various parts are required then
a solution is usually effected by equating the torques in each shaft, e.g. for two

shafts in series

T = GyJ1 64 _ Gy /2 0,

Figure 2.4: “Series connected” shaft - common torque

Composite Shafts - Parallel Connection
If two or more materials are rigidly fixed together such that the applied torque is

shared between them then the composite shaft so formed is said to be connected
in parallel (Figure 2.5).
For parallel connection,
Total Torque T = T, +T, (7)

In this case the angles of twist of each portion are equal and
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il _ Tolp (8)
GiJ1 G2)2
or

E SV (L_z)
TZ GZ]Z L1
Thus two equations are obtained in terms of the torques in each part of the
composite shaft and these torques can therefore be determined.

In case of equal lengths, equation (8) becomes

Ty _ Gy
T, G
A J

T
Figure 2.5: “Parallel connected” shaft - shared torque.

Power Transmitted by Shafts
If a shaft carries a torque T Newton meters and rotates at o rad/s it will do work
at the rate of
Tw Nm/s (or joule/s).
Now the rate at which a system works is defined as its power, the basic unit of
power being the Watt (1 Watt = 1 Nm/s).
Thus, the power transmitted by the shaft:
= Tw Watts.

Since the Watt is a very small unit of power in engineering terms use is

normally made of S.I. multiples, i.e. kilowatts (kW) or megawatts (MW).
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Examplel:
A solid shaft in a rolling mill transmits 20 kW at 120 r.p.m. Determine the
diameter of the shaft if the shearing stress is not to exceed 40MPa and the

angle of twist is limited to 6° in a length of 3m. Use G=83GPa.
Solution

Power=T o
20x103 = Tx120 2m
X = X X —
60

20x103
T = = 1590 N.m
41t

Since two design conditions have to be satisfied, i.e. strength (stress)

consideration, and rigidity (angle of twist) consideration. The calculations

will be as:
H . 16T
= Based on strength consideration (Tmax = 5)
40x106 — 16x1590
* -~ mD3

.~ D = 0.0587 = 58.7mm
T . . TL
= Based on rigidity consideration (9 = ]—G)

_TL

T
32

G

T 32x1590x3
© 6O — = 27
180 Td*x83x10°

=~ D=0.0465 m=46.5 mm
Therefore, the minimum diameter that satisfy both the strength and rigidity

considerations is D=58.7mm. (Answer)
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Example 2:
A steel shaft with constant diameter of 50 mm is loaded as shown in the figure
by torques applied to gears fastened to it. Using G= 83 GPa, compute in

Weduncal ngneceng besertmest

degrees the relative angle of rotation between gears A and D.

800 N.m
\¢
1300 N.m
o \ 1200 N.m
P \
) m ¢ 700 N.m
- Y

B

15m
A<3 m 2
~N 7L

Solution:
It is convenient to represent the torques as vectors (using the right-hand rule)

on the free body diagram, as shown in the figure.

1300N.m 1200 N.m

800 N.m <e— >y <] —»» 700 N.m
D C B A

Using the equations of statics (i.e. ), T = 0), the internal torques are:

TAB:7OON.m, TBC:-SOON.m and TCD:800N.m.

(0.05)*
Jag =Jsc =Jep =] =n3—2

_\TL _ Taplap | Teclpc | Teplep
HA/D - - . + +
JG  JagG  JpcG  JenG

_ : (700x3 — 500x1.5 + 800x2) = 0.0579 rad.

- 4
m(0.09)% 93109
32

.Bayp = 3.32° (Answer)
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Example3:
A compound shaft made of two segments: solid steel and solid aluminum
circular shafts. The compound shaft is built-in at A and B as shown in the ...
figure. Compute the maximum shearing stress in each shaft. Given
Ga=28GPa, Gy = 83 GPa.

T=1 kN.m
Aluminum Steel

ISOmm

15m

DO
V9]

Solution:

This type of problem is a statically indeterminate problem, where the equation
of statics (or equilibrium) is not enough to solve the problem. Therefore, one
equation will be obtained from statics, and the other from the deformation.

= Statics
T,+T,=T =1000 Q)

= Deformation (6, = 6,)

TsLs _ Tala

Since 6, = ,, then o = e , Which yield,
T,x1.5 B T,x3
7T(03'—35)4><83><109 B %JS)LLXZ&GO‘;
from which,
T, = 1.17T, (2)

Solving equation (1) and (2):

T, =461 N.m and T, = 539N.m

= Stresses (r = %)

. . 16T
The maximum stress occur at the surface, i.e. T4y = —
nD3
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16*461
Ty = = 5.57 MPa (Answer
¢ 7(0.075)3 ( )
16%539
Ty = = 22.0 MPa (Answer
S 1(0.05)3 ( )

Example 4:

The compound shaft, shown in the figure, is attached to rigid supports. For
bronze (AB) d=75mm, G=35GPa, 7 < 60MPa. For steel (BC), d=50mm,
G=83GPa, T < 80MPa. Determine the ratio of lengths b/a so that each
material will be stressed to its permissible limit, also find the torque T
required.

N 1 ’
\ 4 ?
A S Bronze Steel ; C
N
N._ a L S 7
Solution:
= For bronze
T,r T, x0.075/2
r,,=]L — 60x10° = - /4
From which
T, = 4970 N.m
For steel
T.r T.x0.05/2
Ty =—— - 80x10° = ns—/
]S 3—2X(005)4
From which

T, = 1963.5 N.m

Applied torque T=T}, + Ty, = 6933.6 N.m (Answer)
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From the deformation 6, = 6,

Tsls _ Toly _ 1963.5xb _ 4970xa
JsGs  JpGp %x(0.05)4x83x109 %x(0.075)4x35x109

From which
(b/a)=1.1856 (Answer)

Example 5:
A compound shaft consisting of an aluminum segment and a steel is acted

upon by two torque as shown in the figure. Determine the maximum
permissible value of T subjected to the following conditions:

T, < 100MPa, T, < 70MPa, and the angle of rotation of the free end limited
to 12°. Use G5, = 83GPa and G, = 28 GPa.

75 mm

‘ T
Aluminum (( = »

N

-

Solution:

<— T <«— 2T
Tal=3T T5t=2T

Joe = :—Zx(0.05)4 = 6.136x10"7"m*

LSS S S

Ju = 3jT—2><(o.075)4 = 3.106x10"5m*

= For steel (r = T]—r)

2Tx0.025

100x10°6 = >
6.136x10

Fromwhich, T = 1.23 kN.m
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= For aluminum

3Tx0.075/2

70x10° = —
3.106x10

ayyiyoll duniall mud
Weduncal ngneceng besertmest

From which, T = 1.93 kNm

= Deformation

6 = Y2 TL _ TyLg , TsLg
=116 " J4Gq = JsGs
i3 3Tx2 2Tx1.5
12x— =
180 3.106x1076x28x10° = 6.136x1077x83x10°

From which, T=1.64 kKN.m

Therefore, the maximum safe value of torque (T) is T=1.23 KN.m (Answer)

Example 6:
The steel rod fits loosely inside the aluminum sleeve. Both components are

attached to a rigid wall at A and joined together by a pin at B. Because of a
slight misalignment of the pre-drilled holes, the torque T, = 750 N.m was
applied to the steel rod before the pin could be inserted into the holes.
Determine the torque in each component after T, was removed. Use G = 80

GPa for steel and G = 28 GPa for aluminum.

Aluminum —.
N
_____________ = Vs Steel
40 mm 1:50 mm : :
______________ TE A
BY Ty

3m |

Solution:

The initial torque T, will cause an initial angle of twist to the steel rod,

ToL 750%3
0, =—==% = 0.1119058 rad.
JsGs  5;(0.04)*x80x10°
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When the pin was inserted into the holes with the removal of T,, the system will
stabilize in static equilibrium. This will cause some of the deformation of steel
rod to be recovered, as shown in the figure. This relation may be expressed as,

Q;ﬂiosition

Ayl duial mud
Wedhama

ingnecrng bepartmest

6, =05+ 06,

TX3 TX3
T + i3
15(0.04)x80x10° © 22((0.05)*—(0.04)*)x28x10°

0.1119058 =

From which, T = 251.5 N.m (Answer)
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