The RSA algorithm:

The RSA (The Rivest-Shamir-Adleman) scheme is a block cipher in which the plaintext and ciphertext are integers between 0 and n - 1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less than 2^{1024} .

Description of the Algorithm

The scheme developed by Rivest, Shamir, and Adleman makes use of an expression with exponentials.

Plaintext is encrypted in blocks, with each block having a binary value less than some number *n*. That is, the block size must be less than or equal to $log_2(n)$; in practice, the block size is *i* bits, where $2^i < n - 2^i + 1$. Encryption and decryption are of the following form, for some plaintext block *M* and ciphertext block *C*:

$$C = M^e \mod n$$
$$M = C^d \mod n = (M^e)^d \mod n = M^{ed} \mod n$$

Both sender and receiver must know the value of n. The sender knows the value of e, and only the receiver knows the value of d. Thus, this is a public-key encryption algorithm with a public key of $PU = \{e, n\}$ and a private key of $PU = \{d, n\}$. For this algorithm to be satisfactory for public-key encryption, the following requirements must be met:

- 1- It is possible to find values of *e*, *d*, *n* such that $M^{ed} \mod n = M$ for all M < n.
- 2- It is relatively easy to calculate mod $M^e \mod n$ and Cd for all values of M < n.
- 3- It is infeasible to determine *d* given *e* and *n*.

We are now ready to state the RSA scheme. The ingredients are the following:

p,q, two prime numbers	(private, chosen)
n = pq	(public, calculated)
<i>e</i> , with $gcd(f(n),e) = 1; 1 < e < f(n)$	(public, chosen)
$d \equiv e^1 \pmod{f(n)}$	(private, calculated)

Figure 11.1 illustrates The RSA Algorithm.

Key Generation		
Select p, q	p and q both prime, $p \neq q$	
Calculate $n = p \times q$		
Calculate $\phi(n) = (p-1)($	(q - 1)	
Select integer e	$gcd(\phi(n), e) = 1; 1 \le e \le \phi(n)$	
Calculate d	$d \equiv e^{-1} \pmod{\phi(n)}$	
Public key	$PU = \{e, n\}$	
Private key	$PR = \{d, n\}$	

	Encryption	
Plaintext:	M < n	
Ciphertext:	$C = M^c \mod n$	

Decryption		
Ciphertext:	С	
Plaintext:	$M = C^d \mod n$	

Figure 11.1. The RSA Algorithm

Ex:

- \blacktriangleright Choose p = 3 and q = 11
- Compute n = p * q = 3 * 11 = 33
- > Compute (n) = (p 1) * (q 1) = 2 * 10 = 20
- Choose e such that 1 < e < (n) and e and n are prime.</p>
 Let e = 7
- Compute a value for d such that (d * e) mod (n) = 1. One solution is

d = 3 because [(3 * 7) mod20 = 1]

- Public key is {e, n} = {7, 33}
- Private key is {d, n} = {3, 33}

For encryption :

The plain text(Message) =2

The cipher text $=2^7 \mod 33$

C = 29

For decryption :

C=29

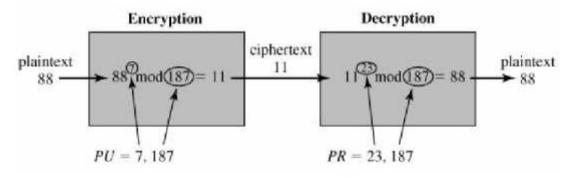
The plain text= $29^3 \mod 33$

P=2

Ex:

- > Select two prime numbers, p = 17 and q = 11.
- ▶ Calculate $n = pq = 17 \ge 11 = 187$.
- Calculate $(n) = (p 1) (q 1) = 16 \ge 160$.
- Select *e* such that *e* is relatively prime to (*n*) = 160 and less than (*n*) we choose *e* = 7.
- > Determine *d* such that $de \equiv 1 \pmod{160}$ and d < 160. The correct value is d = 23, because $23x 7 = 161 = 10 \times 160 + 1$.

The resulting keys are public key $PU = \{7,187\}$ and private key $PR = \{23,187\}$.



The example shows the use of these keys for a plaintext input of M = 88. For encryption, we need to calculate $C = 88^7 \mod 187$.

Exploiting the properties of modular arithmetic, we can do this as follows:

88⁷ mod 187 = [(88⁴ mod 187) x (88² mod 187) x (88¹ mod 187)] mod 187

88¹ mod 187 = 88

88² mod 187 = 7744 mod 187 = 77

884 mod 187 = 59,969,536 mod 187 = 132

88⁷ mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11

By Marwa Al-Musawy

For decryption, we calculate $M = 11^{23} \mod 187$:

 $11^{23} \mod 187 = [(11^1 \mod 187) \times (11^2 \mod 187) \times (11^4 \mod 187) \times (11^8 \mod 187) \times (11^8 \mod 187)] \mod 187$

11¹ mod 187 = 11

 $11^2 \mod 187 = 121$

11⁴ mod 187 = 14,641 mod 187 = 55

11⁸ mod 187 = 214,358,881 mod 187 = 33

11²³ mod 187 = (11 x 121 x 55 x 33 x 33) mod 187 = 79,720,245 mod 187 = 88