power odern Automotive Technolo

by **Russell Krick**

Modern **Automotive** Technology

Publisher The Goodheart-Willcox Co., Inc. **PUBLISHER** Tinley Park, Illinois

© Goodheart-Willcox Co., Inc.

Chapter 1

The Automobile

Contents (11 Topics)

Parts, assemblies, and systems
Frame, body, and chassis
Engine
Computer system
Fuel system
Electrical system

Contents

Cooling and lubrication systems
 Exhaust and emission control systems
 Drive train systems
 Suspension, steering, and brake systems
 Accessory and safety systems

Automobile

Derived from the Greek word *autos,* which means self. Derived from the French word *mobile*, which means moving.

Parts, Assemblies, and Systems

Part

The smallest removable item on a vehicle
 Not normally disassembled
 Electrical or electronic parts are often called components

Assembly

 Set of fitted parts designed to complete a function
 the engine is an assembly that converts fuel into usable power to move the vehicle
 Technicians take assemblies apart and put them back together during maintenance, service, and repair

operations

System

Group of related parts and assemblies that performs a specific job

Othe steering system is comprised of the steering wheel, gears, swivel joints, and other parts

Oallows the driver to turn the wheels when maneuvering the vehicle

Major Vehicle Systems

Frame, Body, and Chassis

Body

Made of steel, aluminum, fiberglass, plastic, or composite materials
 Forms the outside of the vehicle
 Serves as an attractive covering for the chassis

Chassis

Consists of the vehicle's frame and everything attached to it except the body

Includes the tires, wheels, engine, transmission, drive axle assembly, and frame

Frame

Strong metal structure that provides a mounting place for other parts of the vehicle

Body-over-frame construction
 chassis parts and body bolt to the frame
 Unibody (unitized) construction
 sheet metal body panels are welded together to form the body and frame

Unibody Construction

The frame is an integral part of the body

Body-over-Frame Construction

The body bolts to a thick steel frame

Body Types

Automobiles are available in several body types, including: Osedan Ohardtop Oconvertible Ohatchback Ostation wagon Ominivan Osport-utility vehicle

Uses center body pillars, or "B" pillars, between the front and rear doors. A hardtop does not use "B" pillars.

Convertible

Uses a vinyl or cloth top that can be raised and lowered

Hatchback

The large rear door allows easy access when hauling items

Station Wagon

Provides a large rear interior compartment

Has a higher roofline for more headroom and cargo space

Sport-Utility Vehicle

Provides the comfort of a passenger car, the interior space of a station wagon, and the durability of a truck

Automobile Body Parts

Engine

Provides the energy to propel the vehicle and operate the other systems Most engines burn gasoline or diesel fue The fuel burns to produce heat The heat causes gas expansion, creating pressure The pressure moves the internal engine parts to produce power

Automotive Engine

Engine Locations

Basic Engine Parts

Four-Stroke Cycle

Four separate piston strokes are needed to produce one cycle: **Ointake stroke** Ocompression stroke Opower stroke Oexhaust stroke The piston must slide down, up, down, and up again to complete one cycle

Intake Stroke

1—Intake stroke. Intake valve open. Exhaust valve closed. Piston slides down, forming vacuum in cylinder. Atmospheric pressure pushes air and fuel into combustion chamber.

Draws the air-fuel mixture into the cylinder

Compression Stroke

Compresses the air-fuel mixture

Power Stroke

3—Power stroke. Spark plug sparks. Air-fuel mixture burns. High pressure forces piston down with tremendous force. Crankshaft rotates under power.

Produces the energy to operate the engine

Exhaust Stroke

4—Exhaust stroke. Exhaust valve opens. Intake valve remains closed. Piston slides up, pushing burned gases out of cylinder. This prepares combustion chamber for another intake stroke.

Removes the burned gases from the combustion chamber

Automotive Engines

 Multi-cylinder engines are used
 4,5,6,8, or 10 cylinders may be used
 Additional cylinders smooth engine operation and increase power output because there is less time between power strokes

Engine Components

Computer System

Computer System

Uses electronic and electrical devices to monitor and control various systems
 The systems controlled include the:

 fuel system
 ignition system
 drive train
 safety and security systems

Computer System Components

Sensors

 input devices that can produce or modify electrical signals with changes in a condition, such as motion, temperature, or pressure

Control module

Computer that uses signals from input devices (sensors) to control various output devices

Computer System Components

Actuators

 Output devices that can move parts when energized by the control module
 Output devices include electric motors and solenoids

Computerized Door Locks

The doors are locked as soon as the vehicle starts moving in drive or reverse

Fuel System

Fuel System

Provides the correct mixture of air and fuel for efficient combustion Alters the air-fuel ratio with changes in operating conditions such as engine temperature, speed, and load **Fuel system types:** Ogasoline injection system Odiesel injection system Ocarburetor system

Gasoline Injection System

- Uses a control module, sensors, and electrically operated fuel injectors to meter fuel into the engine
- An electric fuel pump pressurizes the fuel
 The control module monitors sensor values and opens the injectors for the correct amount of time to deliver the desired quantity of fuel

Gasoline Injection System

A—Gasoline injection system. Engine sensors feed information (electrical signals) to computer about engine conditions. Computer can then open injector for right amount of time. This maintains correct air-fuel ratio. Spark plug ignites fuel.

Diesel Injection System

- Forces fuel directly into the combustion chambers
- High pressure produced during compression heats the air enough to ignite the fuel
- When fuel is injected into the cylinder, the heated air causes the fuel to ignite and burn

Diesel Injection System

B—Diesel injection system. High-pressure mechanical pump sprays fuel directly into combustion chamber. Piston squeezes and heats air enough to ignite diesel fuel. Fuel begins to burn as soon as it touches heated air. Note that no throttle valve or spark plug is used. Amount of fuel injected into chamber controls diesel engine power and speed.

Carburetor Fuel System

Uses vacuum to draw fuel into the engine

 A mechanical or electric fuel pump delivers fuel to the carburetor
 A throttle valve controls airflow and

engine power output

Carburetor Fuel System

Electrical System

Electrical System

Consists of several subsystems:

 ignition system
 starting system
 charging system
 lighting system

 Each subsystem is designed to perform a specific function

Ignition System

Needed on gasoline engines to ignite the air-fuel mixture

Produces an extremely high voltage surge, which operates the spark plugs
 An electric arc jumps across the tip of each spark plug at the correct time, causing the air-fuel mixture to burn

Ignition System

Starting System

- An electric starting motor rotates the engine until it "fires" and runs on its own power
- When the key is turned to the start position, current flows from the battery through the starting system circuit

The starting motor turns, and the starting motor pinion gear engages a gear on the flywheel, turning the crankshaft

Starting System

Charging System

Replaces electrical energy drawn from the battery by forcing electric current back into it

When the engine is running, the alternator produces electricity to recharge the battery and operate other electrical devices

The voltage regulator controls system voltage

Charging System

Lighting System

Consists of the components that operate a vehicle's interior and exterior lights
 Components may include:

 fuses

Owires

Oswitches

Orelays

Ocontrol modules

Cooling and Lubrication Systems

Cooling System

- Maintains a constant engine operating temperature
- Removes excess combustion heat to prevent engine damage
- Minimizes engine warm-up time
- Coolant is pumped through the engine, where it absorbs heat
- Coolant then flows to the radiator, where heat is released to the outside air

Cooling System

Lubrication System

Reduces friction and wear between internal engine parts by circulating filtered oil to high-friction points in the engine

Helps cool the engine by carrying heat away from internal engine parts

Lubrication System

Exhaust and Emission Control Systems

Exhaust System

Quiets the noise produced by engine operation

Routes engine exhaust gases to the rear of the vehicle body

Exhaust System

Emission Control Systems

Reduce the amount of toxic substances produced by an engine
 prevent fuel vapors from entering the atmosphere
 remove unburned and partially burned fuel from the engine exhaust

Drive Train Systems

Drive Train Systems

Engine

Clutch

Rear-wheel-drive

Front-wheel-drive

Clutch

Allows the driver to engage or disengage the engine and manual transmission or transaxle Clutch pedal released Oclutch locks the flywheel and the transmission together Opower flows to the transmission Clutch pedal depressed Oclutch disengages power flow

Transmission

Uses various gear combinations (ratios), to multiply engine speed and torque to accommodate driving conditions

- Low gear ratios allow the vehicle to accelerate quickly
- High gear ratios permit lower engine speed, providing good fuel economy

Manual Transmission

Uses gears and shafts to achieve various gear ratios
Automatic Transmission

- Does not have to be shifted by the driver
- Uses an internal hydraulic system and, in most cases, electronic controls to shift gears
- Internal clutches or bands control gearsets to provide various gear ratios
 Input shaft is connected to the engine crankshaft through a torque converter

Automatic Transmission

Drive Shaft

 Transfers power from the transmission to the rear axle assembly
 Universal joints allow the rear suspension to move up and down without damaging the drive shaft

Drive Shaft

Rear Axle Assembly

Contains a differential and two axles
 Differential

 set of gears and shafts that transmits power from the drive shaft to the axles

Axles

 steel shafts that connect the differential and drive wheels

Transaxle

Used with front-wheel-drive vehicles
 Both manual and automatic transaxles are available

Transaxle

Consists of a transmission and a differential in a single housing

Front Drive Axles

Connect the transaxle differential to the hubs and wheels of the vehicle
 Equipped with constant-velocity joints
 constant-velocity joints allow the front wheels to be turned to the left or right and to move up and down

Suspension, Steering, and Brake Systems

Suspension System

Allows the vehicle's wheels and tires to move up and down with little effect on body movement

Prevents excessive body lean when cornering quickly

Various springs, bars, swivel joints, and arms make up the system

Steering System

Allows the driver to control vehicle direction by turning the wheels right or left

Uses a series of gears, swivel joints, and rods

Suspension and Steering Systems

Brake System

- Produces friction to slow or stop the vehicle
- When the driver presses the brake pedal, fluid pressure actuates a brake mechanism at each wheel
- Mechanisms force friction material against metal discs or drums to slow wheel rotation

Complete Brake System

Wheel Brake Assembly

Accessory and Safety Systems

Accessory Systems

Common accessory systems include:
 air conditioner
 sound system
 power seats
 power windows
 rear window defogger

Safety Systems

Common safety systems include:
 seat belts
 air bags
 security systems

Safety Systems

This vehicle is equipped with front and side-impact air bags