powerpoint for powerpoint ern Automotive Technolog

by **Russell Krick**

Modern **Automotive** Technology

The Goodheart-Willcox Co., Inc.

© Goodheart-Willcox Co., Inc.

Permission granted to reproduce for educational use only

Chapter 31

Starting System Fundamentals

Contents

Starting system principles
 Starting motor construction

Starting System Principles

The starting system uses battery power and an electric motor to turn the engine crankshaft for engine starting

Basic Starting System

The ignition switch energizes the solenoid

The solenoid energizes the starting motor

Components

Battery ○ source of energy Ignition switch allows driver to control operation Solenoid high current relay (switch) Starting motor high torque electric motor

Starting System Energized

- With the ignition key in the "start" position, current flows through the solenoid coil
- Magnetism closes the solenoid contacts, connecting the battery to the starting motor
- The motor turns the flywheel ring gear

Starting System De-energized

With the ignition key released to the "run" position, no current flows to the solenoid coil

The solenoid contacts open, the starter stops turning, and the starter gear moves away from the flywheel

Starting Motor Fundamentals

Converts electrical energy from the battery to mechanical energy to crank the engine

Produces a turning force through the interaction of magnetic fields inside the motor assembly

Magnetic Field Action

 Made up of invisible lines of force
 Since like charges (fields) repel each other and unlike charges (fields) attract each other, magnetic fields can produce motion

Magnetic Field Action

Simple Electric Motor

If a current-carrying winding is placed inside a magnetic field, the winding rotates away from the pole shoes

Commutator and Brushes

Keep a motor turning by controlling the current through the windings
 Together, they serve as a sliding contact between battery power and the windings

Commutator and Brushes

The commutator reverses the electrical connection when the loop rotates around

Increasing Motor Power

Several windings (loops of wire) and a commutator with many segments are used to increase motor power

As the motor spins, many windings contribute to the motion

Armature

Supports the windings
 Increases the strength of each winding's magnetic field

Field Windings

- Stationary insulated wire wrapped in a circular shape
- When current flows, the magnetic field between the pole shoes becomes very large
- This field acts against the armature's field, producing motion

Armature and Field Windings

Starter Pinion Gear

Small gear on the armature shaft
 Engages a large ring gear on the engine flywheel
 Moves into and meshes with the

flywheel ring gear

Starter Pinion Gear

Part of the pinion drive mechanism

Overrunning Clutch

Locks in one direction
 Releases in the other direction
 Allows the pinion gear to turn the flywheel ring gear for starting
 Lets the pinion gear freewheel when the engine starts

Overrunning Clutch

Locks the flange to the pinion gear in one direction and releases in the other direction

Overrunning Clutch Operation

Rollers jam and lock in one direction and release in the other direction

Pinion Gear Assembly Pinion gear assembly slides on the shaft for engagement

Starter Solenoid

 An electromagnetic switch
 Makes an electrical connection between the battery and the starting motor

Allows the low current ignition switch circuit to control the high current starting motor

Starter Solenoid

Plunger movement pulls the disc into contact with two battery terminals to activate the starter

Solenoid Operation

Low current flows through the windings
 The magnetic field pulls the solenoid plunger and disc toward the windings
 The disc touches both of the high-current terminals
 High current flows to the starter motor

Solenoid Operation

Solenoid Functions

Closes the battery-to-starter circuit
 Pushes the starter pinion gear into mesh with the flywheel ring gear
 Bypasses the resistance wire in the ignition circuit

Starting Motor Construction

Two types:
 movable pole shoe starting motor
 starter-mounted solenoid (starting motor with solenoid)

Movable Pole Shoe Starting Motor

Uses a yoke lever to move the pinion gear into contact with the flywheel

Movable Pole Shoe Starting Motor

Magnetic field pulls the pole shoe downward, causing gear engagement as the armature starts to spin

Starter-Mounted Solenoid

Solenoid plunger moves a shift lever to engage the pinion gear

Starter-Mounted Solenoid

Solenoid completes the battery-to-starter circuit

Solenoid Operation

Permanent-Magnet Starter Uses special high-strength magnets in place of conventional field windings

Starting Motor Torque

- A starting motor must produce high torque
- Difference in gear size between the small pinion and large flywheel ring gear increases turning torque

Reduction Starter

Extra gears further increase torque

Internal Motor Circuits

Series-wound motor
Shunt-wound motor
Compound-wound motor

Series-Wound Motor

Develops maximum torque at initial startup and decreases as motor speed increases

Shunt-Wound Motor

Produces less starting torque but more constant torque at varying speeds

Compound-Wound Motor

Has both series and shunt windings and produces good starting power and constant operating speed

Neutral Safety Switch

Prevents the engine from cranking unless the shift selector is in neutral or park

Mounted on the shift lever or on the transmission

Neutral Safety Switch

Wired in series with the starter solenoid

Starter Relay

Opens or closes one circuit by responding to an electrical signal from another circuit

Uses a small current from the ignition switch to control a larger current through the starter solenoid

Reduces the load on the ignition switch

Starter Relay Operation

- Ignition switch is turned to "start"
 Current flows through the relay windings
 Magnetism closes the relay contacts
 Contacts complete the circuit to the
 - solenoid windings, operating the starter motor

Starting System Circuit

