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CHAPTER TWO HEAT CONDUCTION EQUATION

1-1 Thermodynamics and Heat Transfer
1-2 Engineering Heat Transfer

1-3 Heat and Other Forms of Energy
Specific Heats of Gases, Liquids, and Solids
1-4 Heat Transfer Mechanisms

1-5 Conduction

1-6 Convection

1-6 Radiation

Problem-Solving Technique



2-1 GENERAL HEAT CONDUCTION EQUATION

Rectangular Coordinates

Consider a small rectangular element of length Ax, width Ay, and height Az,
as shown in Figure 2-21. Assume the density of the body 1s p and the specific
heat is C. An energy balance on this element during a small time interval Af
can be expressed as

Rate of heat Rate of heat Rate of change
Rate of heat . . Fih
sundiiction at] — conduction generation | _ [ of the energy
Al atx + Ax, inside the content of
* Y, ' y+ Ay, andz + Az element the element

5 ﬁlE:c-::m{:n
Qx+ Qy—'_ Qz__ Qx%.-i,r_ Q}-+-_"L:.'_ Qz+m+6clmmt:f

Noting that the volume of the element is V..., = AxAyAz, the change in the
energy content of the element and the rate of heat generation within the ele-
ment can be expressed as
AL e =Es g — Ei=mCT, 0 —T) = PCﬂxﬁ_‘J}M{Tt a1

"jcl-um:nt = 8Vetemen = SAXAYAZ

Substituting into Eq. 2—-1, we get

. 2-1

. . . . . . I-;._'_Iﬂl_II I T;
Q:+ 0+ 0. = Criar = Qyvny — Qo $AxAYAZ = pCAXAYAZ——

Dividing by AxAvAz gives

| Cnas—10; 1 Q}'Hﬁ' . Q:P 1
AvAz Ax
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FIGURE 2-21

Three-dimensional heat conduction
through a rectangular volume element.
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Noting that the heat transfer areas of the element for heat conduction in the
x, v, and z directions are A, = AyAz, A, = AxAz, and A, = AxAy, respectively,
and taking the limit as Ax, Ay, Az and Ar — 0 yields

8T @ [ ATY , & (8T a ~dT -

{JE(A ix | ':JI_\ _k l_w) dz ( r]') &§=PCy w273
since, from the definition of the derivative and Fourier’s law of heal
conduction.

lim 1 Q.r+.-1:: i Qx 2 I an: 1 'i _kﬂ Az ﬂ-‘ _ v kﬂ
Ar—s0 &}lﬂz Ax ﬁ}r&z ix ﬂ}!&z ix ﬂ'{' ix

.\' Ay T I'u ady

fm L S —S 1 0 1 af o 0T (T
Ay 0 AxAz Ay AxAz dy  AxAz r]}' dy dy o ay

. 1 Gue—0. 1 3¢ 1 aT af. o

I — = — —_—— st
S0AxAy Az AxAy @ _ Axhy ﬂz( Y ) 3z (L az)

Equation 2-3 is the general heat conduction equation in rectangular coordinates. In the case of
constant thermal conductivity, it reduces to

°T PT #T 8 137
dx’ fj'_‘u: T 3 koo a4 .. 24
where the property « = k/pC is again the thermal diffusivity of the material. Equation 2—4 is known as

the Fourier-Biot equation, and it reduces to these forms under specified conditions:

(1) Steadv-state: T T T F
( calle?i the Poisson equation) i N ;‘:_1,,-3 = iz + & 0
(2) Transieat, no heat generation: T " T " T AT
(called the diffusion equation) A ;‘j_w,,ﬁ dz2 oot
(3) Steady-state, ne heat generation: &1, 8T a7 0

fmllcdthelapldte equation) ax  ay g



Cylindrical Coordinates

The general heat conduction equation in cylindrical coordinates can be
obtained from an energy balance on a volume element in cylindrical
coordinates, shown in Figure 2—-23, by following the steps just outlined.
It can also be obtained directly from Eq. 2-3 by coordinate
transformation using the following relations between the coordinates
of a point in rectangular and cylindrical coordinate systems:

X = rcos b, ¥ = rsin &, and 2=12Z

After lengthy manipulations, we obtain /,/f A \H"““Hu;

L2180} L2 3T 28T o _ ol e
th or -2 A i oz tJ ot FIGURE 2-23

A differential volume element in
cylindrical coordinates.

Spherical Coordinates
The general heat conduction equations in spherical coordinates can be

obtained from an energy balance on a volume element in spherical
coordinates, shown in Figure 2-24, by following the steps outlined
above. It can also be obtained directly from Eq. 2-3 by coordinate
transformation using the following relations between the coordinates
of a point in rectangular and spherical coordinate systems:

i

X = rcos ¢ sin 8, y=rsind sin 6, and z=cos8

Again after lengthy manipulations, we obtain

X
i . ) .
i};—:(f»r#)— e ?i(A;—T)+ : ‘I_ ;_:ﬂ(k E}_g)_gzpt‘.% FIGURE 2-24
il . r#sin® @ dd ¢ resmng ; A differential volume element in
spherical coordinates.




2—-2 ONE-DIMENSIONAL HEAT CONDUCTION EQUATION

Heat Conduction Equation in a Large Plane Wall

Consider a thin element of thickness Ax in a large plane wall, as shown in Fig-
ure 2—13. Assume the density of the wall is p, the specific heat is C, and the
area of the wall normal to the direction of heat transfer is A. An energy bal-
ance on this thin element during a small time interval Af can be expressed as

Rate of heat Rate of heat Rate of Ifleat Rate of change
: 5 generation of the energy
conduction | — | conduction | + ik
inside the content of the
atx atx + Ax
element element
. ":E"Eclcmcnt —
Q.r Q.r + Ay T Gn:]u:mcnt = f:'lf . 2 5

But the change in the energy content of the element and the rate of heat gen-
eration within the element can be expressed as
E,=mC(T, p, — 1)) = pCAMX(T, 4 », — T})

= gAAx

ﬂE:Jcmmt = Ej‘ + A

clcm.cnt g element

Substituting into Equation 2-5, we get

Lywe— T
Q.r - Q.r— Ax L gAgﬂ_x = PCAM%
Dividing by AAx gives
1 Q.r'—.'!l..r - QI 2 Tr+i'|.r i

A Ax g Ar
Taking the limit as Ax — 0 and A7 — 0 yields

1af, o 9T

Aox (*’“’* dr) £=0C %

G Volume
e ;/ element

FIGURE 2-13

One-dimensional heat conduction
through a volume element
in a large plane wall.



since, from the definition of the derivative and Fourier’s law of heat conduction,

0..x.— 0. a0 :
lim LA Ex_ .—Q=f—"(—m£
Av—s0 Ax dx  dx dx
Noting that the area A is constant for a plane wall, the one-dimensional tran-
sient heat conduction equation in a plane wall becomes

Variable conductivity: % (k % ) + §=pC g
#*T , 8 _ 14T

Constant conductivity: e
. axt Kk @4y

where the property a = k/pC is the thermal diffusivity of the material and

represents how fast heat propagates through a material. It reduces to the fol-
lowing forms under specified conditions

(1) Steady-state: L 0
(afat = 0) btk
(2) Transient, no heat generation. ﬂ _ a7
(g=0) gxl O ot
(3) Steady-state, no heat generation: d’T
: e s 7=10
(dfat = 0and ¢ = 0) dx-

General, one dimensional:

MNo  Steady-
generation state

0]
PT. 8 | ﬁ_‘]'
—_— =
axd }E dt

Steady, one-dimensional:

LT

F_D



Heat Conduction Equation in a Long Cylinder

Now consider a thin cylindrical shell element of thickness Ar in a long cylin-
der, as shown in Figure 2—15. Assume the density of the cylinder is p, the spe-
cific heat is C, and the length is L. The area of the cylinder normal to the
direction of heat transfer at any location is A = 2wrL where r is the value of
the radius at that location. Note that the heat transfer area A depends on r in
this case, and thus it varies with location. An energy balance on this thin
cylindrical shell element during a small time interval Af can be expressed as

Rate of heat Rate of chanee
Rate of heat Rate of heat : 8
- ; generation | _ | of the energy
conduction | — | conduction | + T =
inside the content of the
at r atr + Ar
element element
5 "I-“'Eclcm:nt
Qr Qr+$r + Gr.]cm:nl = ﬂ” e 2 6

The change in the energy content of the element and the rate of heat genera-
tion within the element can be expressed as
AEement = Epvae — B, =mC(T, 0 — T)) = PCA&I’{TJ‘+M - T)

Giement = & Vetemens = GAAT

element —

Substituting into Eq. 2—-6, we get
: : Tene — T

Qr - Qr+ir i g;"-‘l..ﬁ! o []CA.I:H"T
where A = 27rrL. You may be tempted to express the area at the midd/e of the
element using the average radius as A = 2w(r + Ar/2)L. But there is nothing
we can gain from this complication since later in the analysis we will take the
limit as Ar — 0 and thus the term Ar/2 will drop out. Now dividing the equa-
tion above by AAr gives

1 Qr+$r - Qr 5 Tr+ﬁr - T}
A A TETeCTE
1 d al

.ng the limit as Ar - AT oy 0T
Taking the limit as Ar — 0 and At — 0 yields 5 (;1;, ar) + ¢ =pC o

¢

Volume element

FIGURE 2-15
One-dimensional heat conduction

through a volume element
in a long cylinder.
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since, from the definition of the derivative and Fourier’s law of heat

conduction,
al
e = (_ME)

R Qr+ﬂr B Qr

Ar
Noting that the heat transfer area in this case i3 A = Z2mwrL, the one-
dimensional transient heat conduction equation in a cylinder becomes

Ar—0
Variable conductivity: 1o (:‘k L J Fd=unl L

rart™ar ) TET Py

: L8 87, & 1T

Constant conductivity: o ttuitl ( ;-—) 4B
Yy Far\ ar ko O g

where again the property o« = kfpC 1s the thermal diffusivity of the material.
Equation 2-26 reduces to the following forms under specified conditions

(1) Steady-state: 1d rﬂ -4 0
(afar = 0) Fdr\ dr k

(2) Transient, no heat generation: 18487y 146F
(¢ =0) rar\"or o gt

(3) Steady-state, no heat generation: d 5 . 0
(dfdf=0and g =0) dr\ dr

(@) The form that is ready to integrate

dfdr)_.
TS

() The equivalent alternative form

dT dT
rdr1+E_

0




Heat Conduction Equation in a Sphere

Now consider a sphere with density p, specific heat C, and outer radius K. The
area of the sphere normal to the direction of heat transfer at any location is
A = 4xr?, where r is the value of the radius at that location. Note that the heat
transfer area A depends on r in this case also, and thus it varies with location.
By considering a thin spherical shell element of thickness Ar and repeating
the approach described above for the cylinder by using A = 4w r? instead of

A = 2=rL, the one-dimensional transient heat conduction equation for a
sphere is determined to be !

. : I 8. { sy dE! 07
. ] 1o el L -
Variable conduciivity: 1 9F (f Kk m,) = pC Y
. 1 4 { «HT"] g _ 141
ATALS iy e L | e e s
Constant conductivity EFY: (; ar | VAT«

where again the property e« = &/pC 1s the thermal diffusivity of the material
It reduces to the following forms under specified conditions:

(1) Steady-state: 1df, aT\ , 8 _ 0
(oot = 0) ridr ﬁfrJ %
2y Transi
(2) Transient, . L o /{ .oT | aT
no heat generation: Ear\" 9] Tl o
[ g = 0)
(3) Steadv-state, . d/{ .dr 42T AT
ne heat generation: FIP= )= 0 or r + 2 5= 0
(lor=0andg=0) °© ’

sl
-7

Volume
element



Combined One-Dimensional
Heat Conduction Equation

An examination of the one-dimensional transient heat conduction equations
for the plane wall, cylinder, and sphere reveals that all three equations can be
expressed in a compact form as

L 9 (00T _ T
Tﬁ(’ R.fu~)+~’5_"cﬂr

where n = 0 for a plane wall, n = 1 for a cylinder, and n = 2 for a sphere. In
the case of a plane wall, it is customary to replace the variable r by x. This
equation can be simplified for steady-state or no heat generation cases as
described before.



2-3 Boundary and Initial Conditions

1- Specified Temperature Boundary Condition

The temperature of an exposed surface can usually be measured directly and | T

easily. Therefore, one of the easiest ways to specify the thermal conditions on 1507 Tix.1) 0°C
a surface is to specify the temperature. For one-dimensional heat transfer
through a plane wall of thickness L, for example, the specified temperature 0% .
boundary conditions can be expressed as L

no.n=T
NL=T
where T, and T, are the specified temperatures at surfacesatx =0andx =L,

respectively. The specified temperatures can be constant, which is the case for
steady heat conduction, or may vary with time.

o, ) = 150°C
L, n="10°C

2- Specified Heat Flux Boundary Condition

When there is sufficient information about energy interactions at a surface, it
may be possible to determine the rate of heat transfer and thus the feat flux g
(heat transfer rate per unit surface area, W/m?) on that surface, and this infor-
mation can be used as one of the boundary conditions. The heat flux in the
positive x-direction anywhere in the medium, including the boundaries, can be g,=—k HTE%
expressed by Fourier’s law of heat conduction as

Heat
flux | Conduction

Heat
g =k ( Fenfuxinte ) (Wi Confuction| flux
ix  \positive x-direction ; ‘-
Then the boundary condition at a boundary is obtained by setting the specified —k GHIESHN ;
heat flux equal to —k(a7/0x) at that boundary. The sign of the specified heat ox )
flux is determined by inspection: positive if the heat flux is in the positive di- 0 4 -
rection of the coordinate axis, and negative if it is in the opposite direction. T .[L *

Note that it is extremely important to have the correct sign for the specified
heat flux since the wrong sign will invert the direction of heat transfer and
cause the heat gain to be interpreted as heat loss



For a plate of thickness L subjected to heat flux of 50 W/m? into the medium
from both sides, for example, the specified heat flux boundary conditions can
be expressed as

dT(0, t aT(L, t
k ( }=5{] and —k T( )=
dx dx

—50 {2-48)

Note that the heat flux at the surface at x = L is in the negative x-direction,
and thus it is —50 W/m?2.

Special Case: Insulated Boundary

Some surfaces are commonly insulated in practice in order to minimize heat
loss (or heat gain) through them. Insulation reduces heat transfer but does not
totally eliminate it unless its thickness is infinity. However, heat transfer

through a properly insulated surface can be taken to be zero since adequate _ fﬂ I Q
insulation reduces heat transfer through a surface to negligible levels. There- Insulation Ix, 1) 60*C
fore, a well-insulated surface can be modeled as a surface with a specified
heat flux of zero. Then the boundary condition on a perfectly insulated surface 0l 4 -
(at x = 0, for example) can be expressed as (Fig. 2-30) L X

AaT(0, 1) dT(0,. 0)

A ax " - dx ) w =4

. : —_ ; X

That is, on an insulated surface, the first derivative of temperature with re- T(L. i = 60°C

spect to the space variable (the temperature gradient) in the direction normal
to the insulated surface is zero. This also means that the temperature function
must be perpendicular to an insulated surface since the slope of temperature at
the surface must be zero.



Another Special Case: Thermal Symmetry

Some heat transfer problems possess thermal symmetry as a result of the
symmetry in imposed thermal conditions. For example, the two surfaces of a
large hot plate of thickness L suspended vertically in air will be subjected to

the same thermal conditions, and thus the temperature distribution in one half
of the plate will be the same as that in the other half. That is, the heat transfer

problem in this plate will possess thermal symmetry about the center plane at | — Center plane
x = Lf2. Also, the direction of heat flow at any point in the plate will be |
toward the surface closer to the point, and there will be no heat flow across the
center plane. Therefore, the center plane can be viewed as an insulated sur- l;am I
face, and the thermal condition at this plane of symmetry can be expressed as HHEG T
- lemperature
ﬁ\< distribution
aT(LI2, 1) | (Symretic
—— =0 about center
i plane)
|
0 0 —%
2
which resembles the insulation or zero heat flux boundary condition. This ST D

result can also be deduced from a plot of temperature distribution with a ¥ 0
maximum, and thus zero slope, at the center plane.
In the case of cylindrical (or spherical) bodies having thermal symmetry
about the center line (or midpoint), the thermal symmetry boundary condition
requires that the first derivative of temperature with respect to r (the radial
variable) be zero at the centerline (or the midpoint}).



3- Convection Boundary Condition

Convection is probably the most common boundary condition encountered
in practice since most heat transfer surfaces are exposed to an environment at
a specified temperature. The convection boundary condition is based on a sur-
face energy balance expressed as

Heat conduction Heat convection
at the surface in a | = | at the surface in
selected direction the same direction

For one-dimensional heat transfer in the x-direction in a plate of thickness L,
the convection boundary conditions on both surfaces can be expressed as

o a7(0, £)

o = T — 700, 1] .

kD - b1, 0 - Tl

where h; and h, are the convection heat transfer coefficients and
T.., and T _,,are the temperatures of the surrounding mediums
on the two sides of the plate, as shown in Figure 2—33.

In writing Eq. 2—7 for convection boundary conditions, we have
selected the direction of heat transfer to be the positive x-
direction at both surfaces. But those expressions are equally
applicable when heat transfer is in the opposite direction at one
or both surfaces since reversing the direction of heat transfer at a
surface simply reverses the signs of both conduction and
convection terms at that surface. This is equivalent to multiplying
an equation by 1, which has no effect on the equality (Fig. 2-34).

Convection | Conduction

T, - T, ﬂ1=—k%

I Conduction

Convection

‘ =
T

d

KDy i p -1,

Convection | Conduction

lh|[]_:;_-.| o nﬂ- ﬂ] =—k —a:f;g;:::: ﬂ

B T

Convection | Conduction

[0, 1) - Ty ] = £ 2000

o

FIGURE 2-33

ox
0
I

L X

FIGURE 2-34



4- Radiation Boundary Condition

In some cases, such as those encountered in space and cryogenic applications,
a heat transfer surface is surrounded by an evacuated space and thus there is
no convection heat transfer between a surface and the surrounding medium. In
such cases, radiation becomes the only mechanism of heat transfer between
the surface under consideration and the surroundings. Using an energy bal-
ance, the radiation boundary condition on a surface can be expressed as

Heat conduction Radiation exchange
at the surfaceina| = | at the surface in
selected direction the same direction

For one-dimensional heat transfer in the x-direction in a plate of thickness L,
the radiation boundary conditions on both surfaces can be expressed as

{?T{ﬂ, .F}

—k ax = E]U[T;‘un:, = T(ﬂ', f}4]
dT(L,

—k> Eu: - = £10[T(L, 1} — T 2]

where g, and £, are the emissivities of the boundary surfaces, o = 5.67 X
10~# W/m? - K* is the Stefan—Boltzmann constant, and T, , and T, . , are the
average temperatures of the surfaces surrounding the two sides of the plate,

respectively. Note that the temperatures in radiation calculations must be ex-
pressed in K or R (not in °C or °F).

Radiation | Conduction

Elﬂ_irl:ln'. = o, 1]4] =—k EI_TIM

T

By
sopr. |

-k

ox

Conduction | Radiation

D e oL, 0~ T,

g

-



5- Interface Boundary Conditions

Some bodies are made up of layers of different materials, and the solution of
a heat transfer problem in such a medium requires the solution of the heat
transfer problem in each layer. This, in turn, requires the specification of the
boundary conditions at each interface.

The boundary conditions at an interface are based on the requirements that
(1) two bodies in contact must have the same temperature at the area of con-

tact and (2) an interface (which is a surface) cannot store any energy, and thus Interface
the heat flux on the two sides of an interface must be the same. The boundary } _/ ;
conditions at the interface of two bodies A and B in perfect contact at x = x; Mat:nal Maténal

can be expressed as
T, (% D = Ty(x, )

Tl.t{.-r,:].. {) = TH{‘T[J" I}

T (x. 1) T (x, 1)
I.’]TA[I.;]. f) HTH{.T[}. {)
B T —ky A
= = Conduction | Conduction
where k, and k; are the thermal conductivities of the layers A and B, respec- —kdﬂi%ﬂ = —kﬂaig'ﬂ
X X

tively. The case of imperfect contact results in thermal contact resistance, 04
which is considered in the next chapter. Tx“



EXAMPLE 2-1 Heat Conduction in a Plane Wall

Consider a large plane wall of thickness L = 0.2 m, thermal conductivity & =
1.2 W/m - °C, and surface area A = 15 m?. The two sides of the wall are main-
tained at constant temperatures of T; = 120°C and T = b0O°C, respectively, as
shown in Figure 2-41. Determine (a) the variation of temperature within the
wall and the value of temperature at x = 0.1 m and (&) the rate of heat con-
duction through the wall under steady conditions.

SOLUTION Plane

Analysis (a) Taking the direction normal to the surface of the wall to be the all

x-direction, the differential equation for this problem can be expressed as e 5
d_{ =0 T| TJ
ax-

with boundary conditions

Iy =T; =120°C

(L) =T, =50°C

Integrating the differential equation once with respect to x yields

ar _ Ot 7. %
e &'

(X

Integrating one more time, we obtain FIGURE 2-41

The first boundary condition can be interpreted as in the general solution, replace all the x’s by zero

and T (x) by T1
)= G, X0+€C, = C=T,

The second boundary condition can be interpreted as in the general solution, replace all the x’s by L

and T (x) by T2. That is, 5
Ty =CL4C = To=CL+T, —» €= EL :

Substituting the C1 and C2 expressions into the general solution, we obtain 7(x) =

-

L

: X+ T



Substituting the given information, the value of the temperature at x =0.1 m is determined to be
_ (50 = 120)°C

(0.1 m) -

(0.1 m) + 120°C = 85°C

(b) The rate of heat conduction anywhere in the wall is determined from Fourier’s law to be

. dar T, —-T, T, — T,

; T, — T, (120 — 50)°C :
== bt | ¥ =) 2 = 3 y

0 =kKA 7 (1.2 W/m - °C)(15 m") 02 m 6300 W



EXAMPLE 2-2 Heat Conduction in the Base Plate of an Iron
Consider the base plate of a 1200-W household iron that has a thickness of

L = 0.5 cm, base area of A = 300 cm?, and thermal conductivity of & = Resistance heater
15 W/m - °C. The inner surface of the base plate is subjected to uniform heat 1200 W \ — Base plate
flux generated by the resistance heaters inside, and the outer surface loses Insulation s ’
heat to the surroundings at T, = 20°C by convection, . Z )
Taking the convection heat transfer coefficient to be A = 80 W/m? . °C and L B | e 300 em
disregarding heat loss by radiation, obtain an expression for the variation of %
temperature in the base plate, and evaluate the temperatures at the inner and z T,=20°C
the outer surfaces. %
SDLUTIDN % h
. Qo 1200W 3 >
d0= 4 = ooz m 10,000 Wim éﬁ
the differential equation for this problem can be expressed as 5_ L4
a1 _ E{:/ -
dx* . amm
with the boundary co
ari) | 7
= ﬁfT = ¢ = 40,000 W/m
drfil) Base plate
—K——=-nTIL} —T.]
ax Heat flux | Conduction
The general solution of the differential equation is again obtained by two successive h
integrations to be . dT(0) T
dT No—— G=—tue
dx €, and I=Ccx+6 .2 Conduction | Convection
where C, and C, are arbitrary constants. Applying the first boundary condition,
dT(0) o 4 LDy -7,
—k e G0 =2 —kCi=¢y, — Cl__E = |
0 TL g




Noting that dT/dx = C, and T(L) = C,L + C,, the application of the second
boundary condition gives

dT(L)

=il e (i) —T.] — —kC,=h(C.L+C))—T,.
Substituting C, = —gg/k and solving for Cs, we obtain

_ do . 4o
Cy=dgtepy5L

Now substituting C; and €, into the general solution (a) gives

g ifili—i
T(I}:T«c*‘f}’n( k1+§_}) ..b

which is the solution for the variation of the temperature in the plate. The tem-
peratures at the inner and outer surfaces of the plate are determined by substi-
tuting x = 0 and x = L, respectively, into the relation (b):

1

O = 7.+ g5 + 1

0.005 m 1 - -
— s} _:_ 5 2 = :3,‘0 a
20°C + (40,000 W/m }(15me'cC+SDme2'°C) €
and
T(Ly=T.+ ¢ (ﬂ 0 l) = 20°C + LR 520°C
= T4V Ty SOW/m2-°C_ - =

Heat flux | Conduction

4y =

Base plate

dx

_ 4 410 &

Conduction | Convection

L dT(L)y B
—k 2 = HT(L) - T,]

L
s



EXAMPLE 2-3 Heat Conduction in a Solar Heated Wall

Consider a large plane wall of thickness L = 0.06 m and thermal conductivity

= 1.2 W/m - °C in space. The wall is covered with white porcelain tiles that
have an emissivity of e = 0.85 and a solar absorptivity of @ = 0.26, as shown
in Figure 2—48. The inner surface of the wall is maintained at 7, = 300 K at all
times, while the outer surface is exposed to solar radiation that is incident at a
rate of q.,,, = 800 W/mZ2. The outer surface is also losing heat by radiation to
deep space at O K. Determine the temperature of the outer surface of the wall
and the rate of heat transfer through the wall when steady operating conditions
are reached. What would your response be if no solar radiation was incident on
the surface?

SOLUTION
Analysis laking the direction normal to the surface ot the wall as the

x-direction with its origin on the inner surface, the differential equation for this
problem can be expressed as
dr
d?
with boundary conditions
IHMy)y=7T,=30K

dI(L) :
—k Ay = EU[T{L)_{- _ T:pncu] — Ol qapar

where T ... = 0. The general solution of the differential equation is again ob-
tained by two successive integrations to be
Ix)=Cx+ 6 (a)

0

Plane wall
Conduction
%
%
it "-:34 .
T, Y
Space
X
FIGURE 2-48

where C; and G, are arbitrary constants. Applying the first boundary condition yields

THoy=C, X0+¢C, —= C,=T
Noting that d7/dx = C, and T(L) = Ci;L + C; = C,L + 1;, the application of
the second boundary conditions gives

dT(L)

e dx = EU’T{L}4 — Qe — — KC, = go(CL + Tl)-; ~ Ofsolar



The application of the second boundary condition in this case gives

dI(L) ;
_kT = EJT{L}-t =0 G- _kcl = EUTE — O gy
Solving for C; gives
C| = ﬂgsﬁlnrk_ EUTE

Now substituting C, and C, into the general solution (a), we obtain

(b)

£l

T(x) = - x+7, [0
At x = L it becomes
£ — gaT?
TL . (_?s.ular L L 1T T|

K
Substituting the given values, we get
> 0.26 X (800 W/m?) — 0.85 X (5.67 X 10~ W/m? - K% T}

= L2W/m - K -(0.06 m) + 300K
T, \*

T, =3104 — D.2469?5(ﬁ)

T, =2927K

Knowing the outer surface temperature and knowing that it must remain con-
stant under steady conditions, the temperature distribution in the wall can be
determined by substituting the T, value above into Eq. (c):

0.26 > (800 W/m?) — 0.85 X (5.67 X 107 W/m? - K¥)(292.7 K)*
1.2W/m - K

x+ 300K

Tix)=
Tx)y=(—1215K/mx + 300 K

the steady rate of heat conduction through the wall can be determined from

,—T; (300 — 292.7) K

4=k T (1.2 W/m - K) 506 m = 146 W/m?




EXAMPLE 2-4 Heat Loss through a Steam Pipe
Consider a steam pipe of length [ = 20 m, inner radius r; = 6 cm, outer radius
r» = 8 cm, and thermal conductivity k = 20 W/m - °C, as shown in Figure
Z2-b0. The inner and outer surfaces of the pipe are maintained at average tem-
peratures of 7; = 150°C and T, = 60°C, respectively. Obtain a general relation

for the temperature distribution inside the pipe under steady conditions, and
determine the rate of heat loss from the steam through the pipe.

SOLUTION

The mathematical formulation of this problem can be expressed as
df.dry_,

dr\” a.’r) -

with boundary conditions
T} =T, = 150°C
T(r) =T, = 60°C
Integrating the differential equation once with respect to r gives
dTl
}'E — C]
where C, is an arbitrary constant. We now divide both sides of this equation by
rto bring it to a readily integrable form,
ar _ G
dr T
Again integrating with respect to r gives
Tir)=C,Inr+ C,; (2
We now apply both boundary conditions by replacing all occurrences of r and
T(r) in Eq. (3} with the specified values at the boundaries. We get
:ﬂ.ﬁ}::r] — C||HF]+C3=T|
Tir)=T, —- Cilnrn+C =T,
which are two equations in two unknowns, C; and C,. Solving them simultane-

ously gives
=T P i
T () g =T In(ry/r,)

FIGURE 2-50
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Substituting them into Eq. (a) and rearranging, the variation of temperature
within the pipe is determined to be

o) = (ln{r}“n}

]{Tz_ T]] + T|

ln{.f‘zllrf'|

The rate of heat loss from the steam is simply the total rate of heat conduction
through the pipe, and is determined from Fourier’s law to be
(ﬂ_ T[ i : T‘j

. G 2
Ocyiater = —hA - = —K2mrl) 7 = —2mkLC, = 2whL o

The numerical value of the rate of heat conduction through the pipe is deter-
mined by substituting the given values

(150 — a0)°C

0 = 2w(20 W/m - °C)(20 m) In(0.08/0.06)

= 786 kW



EXAMPLE 2-5 Heat Conduction through a Spherical Shell

Consider a spherical container of inner radius r; = 8 cm, outer radius r;, =
10 cm, and thermal conductivity k = 45 W/m - °C, as shown in Figure 2-52
The inner and outer surfaces of the container are maintained at constant tem
peratures of [, = 200°C and 7> = 80°C, respectively, as a result of some chem
ical reactions occurring inside, Obtain a general relation for the temperature
distribution inside the shell under steady conditions, and determine the rate o
heat loss from the container.

SOLUTION

The mathematical formulation of this problem can be expressed as

a #,,zﬂq — g  Wwith boundary conditions
dr\ dr
Tir) =T, =200°C
Tir,) =T, =80°C

Integrating the differential equation once with respect to ryields

where C, is an arbitrary constant. We now divide both sides of this equation by
r to bring it to a readily integrable form,

ar_G
dr = r?
Again Integrating with respect to r gives
C
T =—-—+C, (@

We now apply both boundary conditions by replacing all occurrences of r and
T(r) in the relation above by the specified values at the boundaries. We get

C
Trp=T, — —,,—J‘+ C, =T,

C
T =T, » —5+G=T

FIGURE 2-52
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which are two equations in two unknowns, C; and G- . Solving them simultane-
ously gives

12 ; f}Tﬂ; = !"[Tl
Cl = _!';.T.F‘] [T| == Tg] and Cg = ﬁ

Substituﬁng into Eq. (&), the variation of température within the spherical shell
is determined to be
Fitfa

, J'ETE = J'lT]
rir, —ry)

Tir) = (f, —T,) + =1
The rate of heat loss from the container is simply the total rate of heat conduc-
tion through the container wall and is determined from Fourier’s law

dTl : G, I -1
Q ohere = —KA e —Ic{gﬂlm'l}? = —dakC, = dwkr;r; =T
The numerical value of the rate of heat conduction through the wall is deter
mined by substituting the given values to be

(200 — 80)°C
— B 2
Q = 4x(45 W/m - °C)(0.08 m)(0.10 m) (0.10 — 0.08) m

= 27,140 W

= 216.0 kW/m*

"d'l
S A, 4r(0.10 m)?



2-4 HEAT GENERATION IN A SOLID

EXAMPLE 2—6 Heat Conduction in a Two-Layer Medium

Consider a long resistance wire of radius r; = 0.2 cm and thermal conductivity
Kure = 15 W/m - °C in which heat is generated uniformly as a result of re-
sistance heating at a constant rate of g = 50 W/cm? (Fig. 2-51). The wire
is embedded in a 0.5-cm-thick layer of ceramic whose thermal conductivity is
Keoramie = 1.2 Wim - °C. If the outer surface temperature of the ceramic layer
is measured to be 7. = 45°C, determine the temperatures at the center of the
resistance wire and the interface of the wire and the ceramic layer under steady

conditions. Tnierface
SOLUTION
Analysis Letting T, denote the unknown interface temperature, the heat trans-
fer problem in the wire can be formulated as
li ﬂr win:)_;_q .
r‘{fr(J s R
Tlr) =T, Ceramic layer
Tyl 0) _ . FIGURE 2-61
dr .
T\l.i.rchl} = Tf Tlﬁm “.J: = rlj (a)

Moting that the ceramic layer does not involve any heat generation and its
outer surface temperature is specified, the heat conduction problem in that
layer can be expressed as

ch{:rﬂmic
g (r ) =0

dr dr
Tn:tr.mtic “-l]| el TJ’
Tn:cr.lmi-: f:l‘"::l = r; = 45°C
In(riry)
Tr_'arum[c {'F:I . {Tr - Tﬂ o T,r (b

In(rsfr))



We have already utilized the first interface condition by setting the wire and ce-
ramic layer temperatures equal to 7, at the interface r = ;. The interface tem-
perature 7, is determined from the second interface condition that the heat flux
in the wire and the ceramic layer at r = r, must be the same:

T Reyrire dr — 7 Npsramic dr —F T = T Reerumic ln{:‘zfr]}

Solving for T; and substituting the given values, the interface temperature is de-
termined 1o be

IfJ’:-'r:.'.lin: l[f"ﬂl}l - 'chc:amic “.J) !jf'l T:T a5 Tf (1)
F

L

ari 7
(50 X 10° Wim)(0.002 m)* | 0.007 M , seom 110 qor
= A3 Wim: %) Di0im o e M

Knowing the interface temperature, the temperature at the centerline (r = 0) is
obtained by substituting the known quantities into Eq. (3),

7 50 X 106 W/m?)(0.002 m)?
8T _ 149400 + 2l S

fye W =drbgy o 4% (15 Wim - °C)







* Starting with an energy balance on a cylindrical shell

volume element, derive the steady one-dimensional heat con- * Consider a medium in which the heat conduction equa-
duction equation for a long cylinder with constant thermal con- tion is given in its simplest form as
ductivity in which heat is generated at a rate of g.

l i rk d_T ) o ﬂ

I dr m_+3—

(a) Is heat transfer steady or transient?

(f) Is heat transfer one-, two-, or three-dimensional?

(c) Is there heat generation in the medium?

(d) Is the thermal conductivity of the medium constant or
variable?

* Consider a medium in which the heat conduction equa-
tion 1s given in its simplest form as

L2 fadt) 108

r2or\’ ar] oot

(a) Is heat transfer steady or transient?

(b) Is heat transfer one-, two-, or three-dimensional?

(c) Is there heat generation in the medium?

(d) Is the thermal conductivity of the medium constant or
variable?

* Starting with an energy balance on a spherical shell
volume element, derive the one-dimensional transient heat
conduction equation for a sphere with constant thermal con-
ductivity and no heat generation.

* Consider a medium in which the heat conduction equa-
tion is given in its simplest form as
d*T . dT

dr? +E:ﬂ

r

(a) Is heat transfer steady or transient?
(b) Is heat transfer one-, two-, or three-dimensional?
(c) Is there heat generation in the medium?
P1 (d) Is the thermal conductivity of the medium constant or
variable?




* Consider a medium in which the heat conduction equa-
tion is given in its simplest form as

#T  @*T _1aT
axt o ayr ad

(a) Is heat transfer steady or transient?

() Is heat transfer one-, two-, or three-dimensional?

(c) Is there heat generation in the medium?

(d) Is the thermal conductivity of the medium constant or
variable?

. * Consider a medium in which the heat conduction equa-
tion is given in its simplest form as

Ed o @Y BladtN G
Fﬁ(‘“m)+ﬁz(*az)+3—“

(@) Is heat transfer steady or transient?

(h) Is heat transfer one-, two-, or three-dimensional?

(c) Is there heat generation in the medium?

(d) Is the thermal conductivity of the medium constant or
variable?

] * Consider a medium in which the heat conduction equa-
tion is given in its simplest form as

18(s0l), L@ _1of
ridr of rlsint @ Ej[j}l o g

T _1aT

(a) Is heat transfer steady or transient?

() Is heat transfer one-, two-, or three-dimensional?

(c) Is there heat generation in the medium?

() Is the thermal conductivity of the medium constant or
variable?

* Consider a spherical container of inner radius r, outer
radius r5, and thermal conductivity k. Express the boundary
condition on the inner surface of the container for steady one-
dimensional conduction for the following cases: (a) specified
temperature of 50°C. (b) specified heat flux of 30 W/m’ toward
the center, (¢) convection to a medium at T, with a heat trans-

fer coefficient of &

Spherical container




* Water flows through a pipe at an average temperature
of T,, = 50°C. The inner and outer radii of the pipe are ry =
6 cm and r, = 6.5 cm, respectively. The outer surface of
the pipe is wrapped with a thin electric heater that consumes
300 W per m length of the pipe. The exposed surface of the
heater is heavily insulated so that the entire heat generated in
the heater is transferred to the pipe. Heat is transferred from the
inner surface of the pipe to the water by convection with a heat
transfer coefficient of i = 55 W/m® - °C. Assuming constant
thermal conductivity and one-dimensional heat transfer, ex-
press the mathematical formulation (the differential equation
and the boundary conditions) of the heat conduction in the pipe
during steady operation. Do not solve.

Insulation

P3

* Consider a steam pipe of length L = 135 ft, inner ra-
dius r; = 2 in., outer radius r; = 2.4 in., and thermal conduc-
tivity k = 7.2 Btwh - ft - °F. Steam is flowing through the pipe
at an average temperature of 250°F, and the average convection
heat transfer coefficient on the inner surface is given to be h =
1.25 Btu/h - ft* - °F . If the average temperature on the outer




* - A 2-kW resistance heater wire with thermal conductiv-
ity of k = 20 W/m - °C, a diameter of D = 5 mm, and a length
of L = 0.7 m is used to boil water. If the outer surface temper-
ature of the resistance wire is T, = 110°C, determine the tem-
perature at the center of the wire.

Resistance
heater

* In a nuclear reactor, 1-cm-diameter cylindrical uranium
rods cooled by water from outside serve as the fuel. Heal is
generated uniformly in the rods (k = 29.5 W/m - °C) at a rate
of 7 x 107 W/m’. If the outer surface temperature of rods is
175°C, determine the temperature at their center.

P4

* Consider a homogeneous spherical piece of radioactive
material of radius r; = 0.04 m that is generating heat at a con-
stant rate of ¢ = 4 x 10" W/m’". The heat generated is dissi-
pated to the environment steadily. The outer surface of the
sphere is maintained at a uniform temperature of 80°C and
the thermal conductivity of the sphere 1s k = 15 W/m - °C. As-
suming steady one-dimensional heat transfer, (a) express the
differential equation and the boundary conditions for heat con-
duction through the sphere. (b) obtain a relation for the varia-
tion of temperature in the sphere by solving the differential
equation, and (¢) determine the temperature at the center of the
sphere.

A long homogeneous resistance wire of radius ry =
5 inm is being used to heat the air in a room by the passage of
electric current. Heat is generated in the wire uniformly at a
rate of ¢ = 5 % 107 W/m® as a result of resistance heating. If
the temperature of the outer surface of the wire remains at
180°C, determine the temperature at r = 2 mm after steady op-
eration conditions are reached. Take the thermal conductivity
of the wire to be k = 8 W/m - °C. Answer: 212 8°C

180°C

iy

S =S




* Consider a cylindrical shell of length L, inner radius
ri, and outer radius r, whose thermal conductivity varies
linearly in a specified temperature range as k(T) = k;(1 + BT)
where k; and B are two specified constants. The inner surface
of the shell i1s maintained at a constant temperature of T, while
the outer surface is maintained at T,. Assuming steady one-
dimensional heat transfer, obtain a relation for (a) the heat
transfer rate through the wall and (b) the temperature distribu-
tion 71r) in the shell.

P5

Consider a steam pipe of length L, inner radius ry,
oucer radius ry, and constant thermal conductivity k. Steam
flows inside the pipe at an average temperature of T; with a
convection heat transfer coefficient of h. The outer surface of
the pipe is exposed to convection to the surrounding air at a
temperature of T, with a heat transfer coefficient of /. Assum-
ing steady one-dimensional heat conduction through the pipe,
(a) express the differential equation and the boundary condi-
tions for heat conduction through the pipe material, (b) obtain
a relation for the variation of temperature in the pipe material
by solving the differential equation, and (¢) obtain a relation
for the temperature of the outer surface of the pipe.




* Consider a long resistance wire of radius r, = 0.3 cm
and thermal conductivity k. = 18 W/m - °C in which heat is
generated uniformly at a constant rate of ¢ = 1.5 W/em® as a
result of resistance heating. The wire i1s embedded in a 0.4-cm-
thick layer of plastic whose thermal conductivity is Ky = 1.8
W/m - °C. The outer surface of the plastic cover loses heat by
convection to the ambient air at T, = 25°C with an average
combined heat transfer coefficient of h = 14 W/m* - °C. As-
suming one-dimensional heat transfer, determine the tempera-
tures at the center of the resistance wire and the wire-plastic
layer interface under steady conditions.

Answers: 97.1°C, 97.3°C

Plastic cover

* In a nuclear reactor, heat is generated in l-cm-
diameter cylindrical uwranium fuel rods at a rate of 4 X
107 W/m’. Determine the temperature difference between the
center and the surface of the fuel rod. Answer: 9.0°C

P6

* Consider a 20-cm-thick large concrete plane wall
(k = 0.77 W/m - °C) subjected to convection on both sides with
T., =27°C and h; = 5 W/m? - °C on the inside, and T.., = 8°C
and h; = 12 W/m” - °C on the outside. Assuming constant
thermal conductivity with no heat generation and negligible

radiation, (a) express the differential equations and the bound-
ary conditions for steady one-dimensional heat conduction
through the wall, (b) obtain a relation for the variation of tem-
perature in the wall by solving the differential equation, and
(c) evaluate the temperatures at the inner and outer surfaces of
the wall.

* Consider a water pipe of length L = 12 m, inner ra-
dius r; = 15 ¢m, outer radius r, = 20 cm, and thermal conduc-
tivity kK = 20 W/m - °C. Heat is generated in the pipe material
uniformly by a 25-kW electric resistance heater. The inner and
outer surfaces of the pipe are at T = 60°C and T, = 80°C, re-
spectively. Obtain a general relation for temperature distribu-
tion inside the pipe under steady conditions and determine the
temperature at the center plane of the pipe.

* Heat is generated uniformly at a rate of 2.6 > 105
W/m® ina spherical ball (k = 45 W/m - °C) of diameter 30 cm.
The ball is exposed to iced-water at 0°C with a heat transfer co-
efficient of 1200 W/m* - °C. Determine the temperatures at the
center and the surface of the ball.

* A 6-m-long 2-k'W electrical resistance wire is made of
().2-cm-diameter stainless steel (k = 15.1 W/m - °C). The re-
sistance wire operates in an environment at 30°C with a heat
transfer coefficient of 140 W/m? . °C at the outer surface. De-
termine the surface temperature of the wire (a) by using the ap-
plicable relation and (k) by setting up the proper differential
equation and solving it. Answers: {3) 409°C, (b) 409°C



* When a long section of a compressed air line passes
through the outdoors, it is observed that the moisture in the
compressed air freezes in cold weather, disrupting and even
completely blocking the air flow in the pipe. To avoid this
problem. the outer surface of the pipe is wrapped with electric
strip heaters and then insulated.

Consider a compressed air pipe of length . = 6 m, inner ra-
dius r; = 3.7 cm, outer radius r, = 4.0 cm, and thermal con-
ductivity k = 14 W/m - °C equipped with a 300-W strip heater.
Air is flowing through the pipe at an average temperature of
—10°C. and the average convection heat transfer coefficient on
the inner surface is h = 30 W/m? - °C. Assuming 15 percent of
the heat generated in the strip heater is lost through the insula-
tion, (a) express the differential equation and the boundary
conditions for steady one-dimensional heat conduction through
the pipe, (b) obtain a relation for the variation of temperature in
the pipe material by sclving the differential equation, and
(¢) evaluate the inner and outer surface temperatures of the
pipe. Answers: (c) —3.91°C, —3.87°C

Electric heater

Insulation

P7

* Consider a large plane wall of thickness L = 0.4 m.
thermal conductivity k = 2.3 W/m - °C. and surface area A =
20 m*". The left side of the wall is maintained at a constant tem-
perature of T, = 80°C while the right side loses heat by con-
vection to the surrounding air at T., = 15°C with a heat transfer
coefficient of h = 24 W/m? - °C. Assuming constant thermal
conductivity and no heat generation in the wall. (a) express the
differential equation and the boundary conditions for steady
one-dimensional heat conduction through the wall, (b) obtain a
relation for the variation of temperature in the wall by solving
the differential equation, and (¢) evaluate the rate of heat trans-
fer through the wall. Answer: (c) 6030 W

* A spherical metal ball of radius ry is heated in an oven
to a temperature of T; throughout and is then taken out of the
oven and allowed to cool in ambient air at T.. by convection
and radiation. The emissivity of the outer surface of the cylin-
der is &, and the temperature of the surrounding surfaces is
I.... The average convection heat transfer coefficient is esti-
mated to be h. Assuming variable thermal conductivity and
transient one-dimensional heat transfer, express the mathemat-
ical formulation (the differential equation and the boundary
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