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CHAPTER THREE STEADY HEAT CONDUCTION
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3-1 STIEADY HEAT CONDUCTION IN PLANE WALLS

Consider a plane wall of thickness I and average thermal conductivity &.
The two surfaces of the wall are maintained at constant temperatures of
T, and T,. For one-dimensional steady heat conduction through the wall,
we have T(x). Then Fourier’s law of heat conduction for the wall can be

expressed as

: drl -
Ot vt = —KAZ (W) 3-1

where the rate of conduction heat transfer Q . o @nd the wall area A are
constant. Thus we have dT/dx = constant, which means that the temperature

through the wall varies linearly with x. That is, the temperature distribution in
the wall under steady conditions is a straight line (Fig. 3-2).

Separating the variables in the above equation and integrating from x = 0,
where T(0) = T, tox = L, where T(L) = T,, we get

L ; I -
[ Qemsants==[" kaar 3-2

T= T[

Performing the integrations and rearranging gives

T —T,
Ql:un.d, wall — mf (W::l 3'3

= gond

the rate of heat conduction through a plane wall is proportional to
the average thermal conductivity, the wall area, and the
temperature difference, but is inversely proportional to the wall
thickness. Also, once the rate of heat conduction is available, the
temperature T(x) at any location x can be determined by replacing
T,in Eq.3-3 by T, and L by x.

FIGURE 3-2



The Thermal Resistance Concept

Equation 3—-3 for heat conduction through a plane wall can be rearranged as

. 1%
and. wall = R—sﬂ (W} (3-4)
where
Ry = ﬁ (°CIW) (3-5)

is the thermal resistance of the wall against heat conduction or simply the conduction resistance of
the wall. Note that the thermal resistance of a medium depends on the geometry and the thermal
properties of the medium. The equation above for heat flow is analogous to the relation for electric
current flow |, expressed as
V-V,
= 7 (3-B)

£

where R, = /o, A is the electric resistance and V, — V, is the voltage differ- fes I-T,

ence across the resistance (o, is the electrical conductivity). Thus, the rate of R

heat transfer through a layer corresponds to the electric current, the thermal ~— T, 0——— AANNNN——— T,
resistance corresponds to electrical resistance, and the temperature difference B

corresponds to voltage difference across the layer (Fig. 3-3).

() Heat flow

(7} Electric current flow

FIGURE 3-3



Consider convection heat transfer from a solid surface of area A, and tem-
perature T to a fluid whose temperature sufficiently far from the surface is T,
with a convection heat transfer coefficient i. Newton’s law of cooling for con-
vection heat transfer rate QO .., = hA, (T, — T..) can be rearranged as

1ok,
i ; (3-7)
annv £ Rccg-,- {1""':'
where
1 o
= : (3-8)
R A ("C/W)

is the thermal resistance of the surface against heat convection, or simply the
convection resistance of the surface (Fig. 34). Note that when the convec-
tion heat transfer coefficient is very large (h — ==), the convection resistance
becomes zero and T, = T... That is, the surface offers no resistance to convec-
tion, and thus it does not slow down the heat transfer process. This situation is
approached in practice at surfaces where boiling and condensation occur. Also
note that the surface does not have to be a plane surface. Equation 3-8 for
convection resistance is valid for surfaces of any shape, provided that the as-
sumption of i = constant and uniform is reasonable.

When the wall is surrounded by a gas, the radiation effects, which we have
ignored so far, can be significant and may need to be considered. The rate of
radiation heat transfer between a surface of emissivity £ and area A, at tem-
perature T, and the surrounding surfaces at some average temperature T_, . can
be expressed as

. T.-r . Tsurr
O = 80 AT} = Th) = by A, (T, = T) === (W) B0
md
where
Reg= - (K/W) (3-10)
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is the thermal resistance of a surface against radiation, or the radiation re-
sistance, and

de

Mt = 2T, - T

= eo(T2+ T2 )NT. + T,,.) (W/m? - K) (3-11)

SUIT- Eurm

is the radiation heat transfer coefficient. Note that both T, and T, must be
in K in the evaluation of /_,. The definition of the radiation heat transfer co-
efficient enables us to express radiation conveniently in an analogous manner
to convection in terms of a temperature difference. But i, depends strongly
on temperature while f1.,,, usually does not.

A surface exposed to the surrounding air involves convection and radiation
simultaneously, and the total heat transfer at the surface is determined by
adding (or subtracting, if in the opposite direction) the radiation and convec-
tion components. The convection and radiation resistances are parallel to each
other, as shown in Fig. 3-5, and may cause some complication in the thermal
resistance network. When T, = T, the radiation effect can properly be ac-
counted for by replacing / in the convection resistance relation by

Beprbined = Mooy T g (W/m? . K) (3-12)

where i, pineq 1S the combined heat transfer coefficient. This way all the
complications associated with radiation are avoided.

Q'.'Uﬂ'\'
R

—AAAAMA—e T,

COony

A'n
L’
Q
—_—

Q rad

—
—AANANNS —a TEL!FI

R

rad

Solid

Q = QCDD'-‘ T i':;';n:uﬂ

FIGURE 3-5



3-2 Thermal Resistance Network

i o=t

Q = .JI[ A{le = TI.:' = kA I = "'IEA[TZ = TMEJ T.
"1 —\ Wall
which can be rearranged as
_T‘-r.l -Tl_TI _T:_TI-T'RE
¢ = I/hhA ~— LIKA — 1/hA
T».;t_T[_T|-T3 TE_T'.-_'I T:..

R{oﬁt oA Rw.tfi R{mv. 2 Ta

Adding the numerators and denominators yields

e Tu—T . I |
Q = R—E fW} _g‘__ Rca:lm'. | TI Hu‘.!ll TE R-:‘mv.i Thermal
teotal T'J-t| -—“JWR#VV"—'—WW’"—'—’VM%V‘—' T"Z nelwork
where
" R 4
e €2 «3 Electrical
1 - analogy
Rh.,._j:R !‘i'R.n]i‘i‘R- 'lzL‘i'L‘i'L [”C!‘W}
T - il .’l'| A kA ITI'J_H.

It is sometimes convenient to express heat transfer through a medium in an
analogous manner to Newton's law of cooling as
?"’.u = | Ta__'_-

:I = [/ T — ——
0 = UAAT - (W)

where U is the overall heat transfer coefficient,
|
er.mlai

Therefore, for a unit area, the overall heat transfer coefficient is equal to the
inverse of the total thermal resistance.

UA =




Multilayer Plane Walls

Consider a plane wall that consists of two layers (such as a brick wall with
a layer of insulation). The rate of steady heat transfer through this two-layer

composite wall can be expressed as

: Tm} _T“:."'_.,
C =R

total

where R, is the fotal thermal resistance, expressed as

Rll:l[il] —= Rmm‘. | T Rwal],l 45 Rwa]],? 32 Rcum‘. z T. ; Wall 1 Wall 2
I8 Iy
gl g M L] NI
.IIEE-!A .I:C|A r"rfgzjl ;124511 \
. . . A T,
The subscripts 1 and 2 in the R, relations above
indicate the first and the second layers, respectively. "
kl k‘Z
- T
Tofind T =—2t 1
! Rcc:-m',l L, L,
Tofind T,: @ A= Ty
= I:':lﬂ'r',|+R|
, S e T T
Toimd Iy G=cp — = Toop e— A — 34— AN —— AN —
cony._ 2
e R]=i rR,__ L
com. 17" A kA TEA

The interface temperature T, between the two walls l

can be determined from
= Rt T Ry 1 L,

mhA kA




EXAMPLE 3-1 Heat Loss through a Wall

Consider a 3-m-high, 5-m-wide, and 0.3-m-thick wall whose thermal con-
ductivity is kK = 0.9 Wim - °C (Fig. 3-11). On a certain day, the temperatures of
the inner and the outer surfaces of the wall are measured to be 16°C and 2°C,
respectively. Determine the rate of heat loss through the wall on that day.

SOLUTION

Noting that the heat transfer through the wall is by conduction and

the area of the wall is A =3 m x 5 m= 15 m?, the steady rate of heat

transfer through the wall can be determined from

i FHG =250
L 0.3 m

We could also determine the steady rate of heat transfer through the wall by
making use of the thermal resistance concept from

2

O = kA = (0.9 W/m - °C)(15 m?) = 630 W

Y — ‘ﬁTu-'u!I
Rw;ﬂl

where

T 0.3 m

kA~ (0.9 Wim - °C)(15 m2)
Substituting, we get

_ MO 630 W
T 0.02222°C/W

= (0.02222°C/'W

Rwall i

16°C 1\
2°%C

L=03m
FIGURE 3-11
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EXAMPLE 3-2 Heat Loss through a Single-Pane Window

Consider a 0.8-m-high and 1.5-m-wide glass window with a thickness of 8 mm
and a thermal conductivity of k = 0.78 W/m - °C. Determine the steady rate of
heat transfer through this glass window and the temperature of its inner surface
for a day during which the room is maintained at 20°C while the temperature of
the outdoors is —10°C. Take the heat transfer coefficients on the inner and
outer surfaces of the window to be 1, = 10 W/m? - °C and h, = 40 W/m? - °C,
which includes the effects of radiation.

SOLUTION
A=08mx15m=1.2m?
1 1
Ri=Rypp 1 === = 0.08333°C/W
PoTem b A (10 Wim? - °C)(1.2 mY)
L 0.008 m
Rise=g,— = 0.00855°C/ W
BT kA (078 W/m - °C)(1.2 m?)
R, = Reppu2 = L I = 0.02083°C/'W

hA (40 W/m2 - °C)(1.2 m?)
Noting that all three resistances are in series, the total resistance is
Riotat = Reon 1 + Rgtass + Reomy2 = 0.08333 + 0.00855 + 0.02083

= 0.1127°C/'W

Then the steady rate of heat transfer through the window becomes
Top — Ty [20 = (—10)]°C
Row  0.1127°C/W

Knowing the rate of heat transfer, the inner surface temperature of the window
glass can be determined from

. TQCJ N TJ .
Q = TI = Taﬂl " QREGI‘I‘-‘,J

R
conv, | 20°C — (266 W)(0.08333°C/W)
= =2.2°C

= 266 W

200C
\T

hy =10 Wim?."C

1 Glass

2
¥—]D°C

B, =40 W/m2-°C

L =8 mm

k;

alass

R R,
T-:o l -—-W~—+—'wv—*—~mw—I Ta_-, a
i



EXAMPLE 3-3 Heat Loss through Double-Pane Windows

Consider a 0.8-m-high and 1.5-m-wide double-pane window consisting of two
d-mm-thick layers of glass (k = 0.78 W/m - °C) separated by a 10-mm-wide

stagnant air space (k = 0.026 W/m . "C). Determine the steady rate of heat
transfer through this double-pane window and the temperature of its inner sur-

face for a day during which the room is maintained at 20°C while the tempera-
ture of the outdoors is —10°C. Take the convection heat transfer coefficients on
the inner and outer surfaces of the window to be i, = 10 W/m? . °C and h, =

40 W/m? . °C, which includes the effects of radiation.

SOLUTION
A=08mx1.5m= 1.2 m?
| 1 5

R,- = chnl.'_l - -’I|A - (l{] WIITIE ] nC}{IE II']E_} = (0,08333°C/W

o L 0.004 m B g
RI - R_’i. = Rglags - -Iﬂ.'|r’j| - (D?B wW/m - UC}(].E |113j = 0.00427°C/W

L, 0.01 m
" = alr — 2 -— 3 — A 2 Q W

Re = Rur = 14 = (0,026 Wim - °C)(1.2 m?) 0.3205°C
R,= chm‘,j I ! = 0.02083°*C/ W

T A (40 W/m? - °C)(1.2 m?)
Noting that all three resistances are in series, the total resistance is
Rioal = Reonv, 1 + Rylass, 1 T Raie + Rypass 2 + Reony 2

= (L.08333 + 0.00427 + 0.3205 + 0.00427 + 0.02083

= (0.4332°C/'W
Then the steady rate of heat transfer through the window becomes
Ty —Tuy  [20 — (—10)]°C

Row  0.4332°CIW

The inner surface temperature of the window in this case will be
Ty =T, — QRMH = 20°C — (69.2 W)(0.08333°C/W) = 14.2°C

0 = =69.2W

4 mm

Glass

[

Glass

\

Air

4 mm




3—3 GENERALIZED THERMAL RESISTANCE NETWORKS

The thermal resistance concept or the electrical analogy can also be used to
solve steady heat transfer problems that involve parallel layers or combined
series-parallel arrangements. Although such problems are often two- or even
three-dimensional, approximate solutions can be obtained by assuming one-

dimensional heat transfer and using the thermal resistance network.

Consider the composite wall shown in Fig. 3—19, which consists of two par-
allel layers. The thermal resistance network, which consists of two parallel re-
sistances, can be represented as shown in the figure. Noting that the total heat

transfer is the sum of the heat transfers through each layer, we have

T—-T, T,—T
R, ' R

Q=QI+Q?_=

Utilizing electrical analogy, we get
™

o
A ﬁi?l-."l.:ﬂ

where

1 1 1 R\R,

R B B @ Be~gog,

since the resistances are in parallel.

-=(T, — T3)

AL,
(&+

1
Ry

|

Insulation

%

A, —
1 {D k|
Tlf_ ::"‘Tz
@ kK
Ay—
L
Q]—p-
AN
g R, Q.
T — 0 ——e 15
AN

’..ﬂ_. = Q| +Qg
FIGURE 3-19



Now consider the combined series-parallel arrangement shown in Fig.
3-20. The total rate of heat transfer through this composite system can again
be expressed as

B =T

Q = T P where Insulation
IRE
Rmm:RI1+R3+RmnF:R= +R2+R3 +Rcumr
and
L] L:! L3 1
IRl e kl.-‘i]’ RE - sz2' 3 — kj-‘ij’ RCDIH" e Mﬂ.

FIGURE 3-20



EXAMPLE 3—<Heat Loss through a Composite Wall

A 3-m-high and b-m-wide wall consists of long 16-cm X 22-cm cross section
horizontal bricks (k = 0.72 W/m . °C) separated by 3-cm-thick plaster layers
(k= 0.22 W/m - °C). There are also 2-cm-thick plaster layers on each side of
the brick and a 3-cm-thick rigid foam (k = 0.026 W/m - °C) on the inner side

of the wall, as shown in Fig. 3-21. The indoor and the outdoor temperatures are Foam Plaster
20°C and —10°C, and the convection heat transfer coefficients on the inner ’—}" hy
and the outer sides are h; = 10 W/m? . °C and h, = 25 W/m? - °C, respectively. T
Assuming one-dimensional heat transfer and disregarding radiation, determine )
the rate of heat transfer through the wall. :
SOLUTION : 13 em
R=R._.,= = = 04°"C/'W :

P T T A (10 Wim? - °C)(0.25 X 1 m?) h] Brick

L 0.03 m T 22 em

R, =R =—= = 4.6°C/'W

PR T A T (0,026 W/m - °C)H0.25 X 1 m?)

L 0.02 m

Ry=Bom Ry aie= = ;

2T TR kA (D22 W/m - CX025 X Lind) Lo

= 0.36°C/W

R R R ol 0.16 m

3T T Tphslencener T g4 T (0,22 Wim - °C)(0.015 X 1 m?) N SN

= 48.48°C/'W —x
L 0.16 m = 3+ 2— 16 o —+=2+

=R, ..=—= = 1.01°C/'W

BT kA (072 W/m - °C)(0.22 X 1 m?) .

| 1 3

T = 0.16°C/W -

o TR A (25 Wim? - °C)(0.25 X 1 m?) Ri R R, | R | K R,
The three resistances Rs, R,, and R; in the middle are parallel, and their equiv- Tooy e—w——tr—— —iy—e T

alent resistance is determined from

v S R 1 = : FIGURE 3-21
Rus R: Ry ¥ R; 4848 ¥ 1.01 +43_43 1.03 W/°C

which gives

Wi




R = 097°C/W

mid
Now all the resistances are in series, and the total resistance is
Row =R+ R + B, + Ry + R, + R,
=044+46+036+097+036+0.16

= 6.85°C/W

Then the steady rate of heat transfer through the wall becomes

. T, —T, [20—(—10)]°C
Q= R.,,  6.85°C/W

— 438 W (per 0.25 m> surface area)

or 4.38/0.25 = 17.5 W per m? area. The total areaof thewallis A=3 m X 5
m = 15 m?. Then the rate of heat transfer through the entire wall becomes

O oy = (17.5 WimH)(15 m?) = 263 W



3—4 HEAT CONDUCTION IN CYLINDERS AND SPHERES

Consider steady heat conduction through a hot water pipe. Heat is continu-
ously lost to the outdoors through the wall of the pipe, and we intuitively feel
that heat transfer through the pipe 1s in the normal direction to the pipe surface
and no significant heat transfer takes place in the pipe in other directions
(Fig. 3—23). The wall of the pipe, whose thickness is rather small, separates
two fluids at different temperatures, and thus the temperature gradient in the
radial direction will be relatively large. Further, if the fluid temperatures in-
side and outside the pipe remain constant, then heat transfer through the pipe
is steady. Thus heat transfer through the pipe can be modeled as steady and
one-dimensitonal. The temperature of the pipe in this case will depend on one
direction only (the radial r-direction) and can be expressed as T = T(r). The
temperature 1s independent of the azimuthal angle or the axial distance. This
situation is approximated in practice in long cylindrical pipes and spherical
containers.

In steady operation, there is no change in the temperature of the pipe with
time at any point. Therefore, the rate of heat transfer into the pipe must be
equal to the rate of heat transfer out of it. In other words, heat transfer through
the pipe must be constant, and, eyl = constant.

FIGURE 3-23



Consider a long cylindrical layer (such as a circular pipe) of inner radius r,
outer radius r,, length I, and average thermal conductivity k (Fig. 3-24). The
two surfaces of the cylindrical layer are maintained at constant temperatures
T, and T. There is no heat generation in the layer and the thermal conductiv-
ity is constant. For one-dimensional heat conduction through the cylindrica
layer, we have T(r). Then Fourier’s law of heat conduction for heat transfei
through the cylindrical layer can be expressed as

! ar
o cond, cyl —kA E (W)
where A = 2mrrL is the heat transfer area at location » Note that A depends on
r, and thus it varies in the direction of heat transfer. Separating the variables
in the above equation and integrating from r = ry, where 7(r;) =T}, to r = r»,
where T(r,) = T, gives

o0

"fz = cond, cyl !
] ——————dr=-—[ kdT  (3-36)
Jr= Ir| "‘4' o T= Ti

Substituting A = 27rL and performing the integrations give

0 e T L W
eond, eyl — £ 1]1[:1"21'(1"1) ( ?]

since (.4 ot = constant. This equation can be rearranged as

: T —-T,
Q cond, eyl — Rl:_‘.-‘l

(W)

_ | In(ry/ry) i In{Outer radius/Inner radius)
ol 2mlk 2w X (Length) X (Thermal conductivity)

is the thermal resistance of the cylindrical layer against heat conduction, or
simply the conduction resistance of the cylinder layer.

FIGURE 3-24



We can repeat the analysis above for a spherical layer by taking A = 4w/
and performing the integrations in Eq. 3-36. The result can be expressed as
Tl - T"

O where

= cond. sph H.~pn
- fa—n _ QOuter radius — Inner radius
™ 4qrryrk - 4m(Outer radius)(Inner radius)(Thermal conductivity)

R

is the thermal resistance of the spherical layer against heat conduction, or sim
ply the conduction resistance of the spherical layer.

Now consider steady one-dimensional heat flow through a cylindrical or
spherical layer that is exposed to convection on both sides to fluids at temper-
atures T.,,; and T, with heat transfer coefficients &, and #,, respectively, as
shown in Fig. 3-25. The thermal resistance network in this case consists of
one conduction and two convection resistances in series, just like the one for
the plane wall, and the rate of heat transfer under steady conditions can be ex-
pressed as

Ty = T

where
R

ltal
leal = Rmn\'. l T Rc}'l i Rc'n:-nv.l
l In(r2/ry) 1
+ " r—
2mr,L)h, * 2wLk ' (2wr,Lh,

R:mv.:

for a cylindrical layer, and
Rmut = len‘.] + Rsph T Ruum.f
Fa—T
_ l‘ i L 1,,
(4mriMy,  4mnnk  (Aardi,

Ry = Rmu'-',l T R-.wl + Rogay,2

for a spherical layer. Note that A in the convection resistance relation R, =
1/hA is the surface area at which convection occurs. It is equal to A = 2nrL
for a cylindrical surface and A = 4mr” for a spherical surface of radius r.



Multilayered Cylinders and Spheres

Steady heat transfer through multilayered cylindrical or spherical shells can be
handled just like multilayered plane walls discussed earlier by simply add-
ing an additional resistance in series for each additional layer. For example,
the steady heat transfer rate through the three-layered composite cylinder
of length L shown in Fig. 3-26 with convection on bc
pressed as

G .F'-:j — .I.r'cz
- Rlﬂl:ﬂ
where R, is the fotal thermal resistance, expressed as hy
T
Rlnl:ﬂ = Rcumr. | + R-':yl,l + Rn:],.'L 2 + Rc].-‘l.i + R{'um‘.’_"
In(radr In(rs/r In(ry/r
1 P f1|]+ (HE:J_E_ (43)+ 1 (3.46)
nA,  2mlk, | 2mlk, | 2wlks | IhA,
|T| |7 h T,
Ty » WA AN AN — e AN —— AR —e T,
Recar. [ R{'_lrl.l | Rr:-l.: R;'ylj L
FIGURE 3-26

where A, = 27r,L and A, = 27rr,L. Equation 3-46 can also be used for a
three-layered spherical shell by replacing the thermal resistances of cylindri-
cal layers by the corresponding spherical ones. Again, note from the thermal
resistance network that the resistances are in series, and thus the total thermal
resistance is simply the arithmetic sum of the individual thermal resistances in
the path of heat flow.

We could also calculate T, from

o I, — T, . I, — T,

Ry + Ry + Ry In(riiry)  In(ry/rs) 1
dmlk, | 2mlks | h(2wrsl)

0




EXAMPLE 3-5 Heat Loss through an Insulated Steam Pipe

Steam at 7, = 320°C flows in a cast iron pipe (k = 80 W/m - °C) whose inner

and outer diameters are ), = 5 cm and D, = 5.5 ¢m, respectively. The pipe is

covered with 3-cm-thick glass wool insulation with & = 0.05 W/m - °C. Heat is

lost to the surroundings at [, = 5°C by natural convection and radiation, with T hy
a combined heat transfer coefficient of ., = 18 W/m? - °C. Taking the heat mz_
transfer coefficient inside the pipe to be h; = 60 W/m? - °C, determine the rate
of heat loss from the steam per unit length of the pipe. Also determine the tem-
perature drops across the pipe shell and the insulation.

SOLUTION Insulation .
Taking L= 1m

A, = 2w L = 2w(0.025 m)(1 m) = 0.157 m?
Ay = 2ar L = 27(0.0575 m)(1 m) = 0.361 m?

Then the individual thermal resistances become
1 1

B = Reont =3 2~ oW - cOy0157m3)y 0 W
P Vi) S . c 5/ ) RO ]:"‘”'
e = Dk L 2m(80 Wim - °C)(1 m) ? )
R i) 575275 _ e
2 = Risuion = 37~ = 277(0.05 W/m - °C)(1 m) i 4 5
Ro = Reomy2 = hzlﬂj T (18 W/m? - DICJ(D.S{SI | O PYEW = 'J;?I " 1}:_-, B R; : 'WET * fen

Noting that all resistances are in series, the total resistance is determined to be
Ry =R + R, + R, + R,=0.106 + 0.0002 + 2.35 + 0.154 = 2.61°C/W
Then the steady rate of heat loss from the steam becomes
=Ty (05T ,
0= Rew . 2.61°CIW 121 W (per m pipe length)
AT = QR sipe = (121 W)(0.0002°C/ W) = 1.02°C
‘ﬁTinsulallun = QR insulation — “2] W)(ESEDCP‘N:‘ i 284?[:‘




3-5 CRITICAL RADIUS OF INSULATION

We know that adding more insulation to a wall or to the attic always decreases
heat transfer, The thicker the insulation, the lower the heat transfer rate. This
is expected, since the heat transfer area A is constant, and adding insulation
always increases the thermal resistance of the wall without increasing the
convection resistance.

Adding insulation to a cylindrical pipe or a spherical shell, however, is a dif-
ferent matter. The additional insulation increases the conduction resistance of
the insulation layer but decreases the convection resistance of the surface be-
cause of the increase in the outer surface area for convection. The heat trans-
fer from the pipe may increase or decrease, depending on which effect
dominates.

Consider a cylindrical pipe of outer radius r, whose outer surface tempera-
ture T, is maintained constant (Fig. 3-30). The pipe is now insulated with a
material whose thermal conductivity is k and outer radius is r,. Heat is lost
from the pipe to the surrounding medium at temperature T, with a convection
heat transfer coefficient /i. The rate of heat transfer from the insulated pipe to
the surrounding air can be expressed as (Fig. 3-31)

. T,-T.  T,-T.

Q - I"'Eins T Rmnv B lﬂ{*‘r]"r.r!} 3 1
2Lk h(2wr;L)

The variation of @ with the outer radius of the insulation r, is plotted in
Fig. 3-31. The value of r, at which O reaches a maximum is determined from
the requirement that 40 /dr, = 0 (zero slope). Performing the differentiation
and solving for r, yields the critical radius of insulation for a cylindrical
body to be

k :
Ter cylinder = E (m)

Insulation

QJ

Crma
Qhare

coav
Wih—a T':C

FIGURE 3-30

FIGURE 3-31



Note that the critical radius of insulation depends on the thermal conductivity
of the insulation k and the external convection heat transfer coefficient A.
The rate of heat transfer from the cylinder increases with the addition of insu-
lation for r, < r_,, reaches a maximum when r, = r_, and starts to decrease for
r» > r.. Thus, insulating the pipe may actually increase the rate of heat trans-
fer from the pipe instead of decreasing it when r, < r_..

The important question to answer at this point is whether we need to be con-
cerned about the critical radius of insulation when insulating hot water pipes

or even hot water tanks. Should we always check and make sure that the outer

radius of insulation exceeds the critical radius before we install any insula-
tion? Probably not, as explained here.

The value of the critical radius r.. will be the largest when k is large and /i 1s
small. Noting that the lowest value of /i encountered in practice is about
5 W/m? - °C for the case of natural convection of gases, and that the thermal
conductivity of common insulating materials is about 0.05 W/m? - °C, the
largest value of the critical radius we are likely to encounter is

1 By ILI:;m:m,insuulza-'.it}n - 0.05 W/mn © °C
i Mo 5Wim?- °C

This value would be even smaller when the radiation effects are considered.
The critical radius would be much less in forced convection, often less than
1 mm, because of much larger /i values associated with forced convection.
Therefore, we can insulate hot water or steam pipes freely without worrying
about the possibility of increasing the heat transfer by insulating the pipes.

1 =00lm=1cm

The discussions above can be repeated for a sphere, and it can be shown in
a similar manner that the critical radius of insulation for a spherical shell is
2k

Fer, sphere =
f
where k is the thermal conductivity of the insulation and / is the convection
heat transfer coefficient on the outer surface.



EXAMPLE 3—-6 Heat Loss from an Insulated Electric Wire

A 3-mm-diameter and 5-m-long electric wire is tightly wrapped with a 2-mm-
thick plastic cover whose thermal conductivity is A = 0.15 W/m - °C. Electrical
measurements indicate that a current of 10 A passes through the wire and there
is a voltage drop of 8 V along the wire. If the insulated wire is exposed to a
medium at T,, = 30°C with a heat transfer coefficient of h = 12 W/m? - °C, de-
termine the temperature at the interface of the wire and the plastic cover in
steady operation. Also determine whether doubling the thickness of the plastic
cover will increase or decrease this interface temperature.

SOLUTION
The rate of heat transfer becomes equal to the heat generated
within the wire, which is determined to be
Q = ﬁ{, =VI=(EBVII0A)=580W
The values of these two resistances are determined to be
As = 2mry)L = 2w(0.0035 m)(5 m) = 0.110 m?

1 1
T = 0.76°C/'W
o0V T pA, (12 W/m? - °C)(0.110 m?)
In(ralry) In(3.5/1.5) B

plastic: ™ 2arkl, — 2m(0.15 W/m + °C)(5 m)

d theref . T T
ar ererore Q ‘ S Y S—— S T'p:
Riiar = Rijasic + Roy = 0.76 +0.18 = 0.94°CI'W Rjastic R
Then the interface temperature can be determined from
. Tl = :T:-;, . .
= Rlu-ta! > TI = T::: Ll QR total

= 30°C + (80 W)(0.94°C/ W) = 105°C
To answer the second part of the question, we need to know the critical radius of insulation of the plastic

cover Al
¥ _DHSWAL € pevee e

W= —
T oh 12Wm? - °C




which is larger than the radius of the plastic cover. Therefore, increasing the
thickness of the plastic cover will enhance heat transfer until the outer radius
of the cover reaches 12.5 mm. As a result, the rate of heat transfer @ will in-
crease when the interface temperature 75 is held constant, or T; will decrease
when @ is held constant, which is the case here.

Discussion It can be shown by repeating the calculations above for a 4-mm-
thick plastic cover that the interface temperature drops to 90.6°C when the
thickness of the plastic cover is doubled. It can also be shown in a similar man-
ner that the interface reaches a minimum temperature of 83°C when the outer
radius of the plastic cover equals the critical radius.



Problems Group A

3.1 Consider a slab of thickness 10cm. One surface is kept at 20°C
and the other at 100°C. Determine the heat flow rate across the
slab if the slab is made of pure copper [k=387W/m.°C], pure
aluminum [k=202W/m.’C], and pure iron [k=62W/m.°C].

3.2 A brick wall {k=0.69W/m.°C] 5cm thick is exposed to cool air at
10°C with a heat transfer coefficient of 10W/m”°C at one of its
surfaces, while the other surface is kept at 70°C. What is the
temperature of the surface that is exposed to cool air?

Answer: 44.9°C

3.3 Consider a furnace wall {k=1W/m.°C] with the inside surface at
1000°C and the outside surface at 400°C. If the heat flow
through the wall should not exceed 2000W/m”. what is the
minimum wall thickness ?

Answer; 30cm

3.4 Consider a plane wall 25cm thick. The inner surface is kept at
400°C, and the outer surface is exposed to an environment at
800°C with a heat transfer coefficient of 10W/m>.°C. If the
temperature of the outer surface is 685°C, calculate the thermal
conductivity of the wall. What might the material be?



3.6

3.7

3.8

A certain material 2.5cm thick, with a cross-sectional area of
0.11112_. has one side maintained at 35°C and the other at 95°C.
The temperature at the center plane of the material is 62°C, and
the heat flow through the material is 1kW. Obtain an expression
for the thermal conductivity of the material as a function of
temperature.

A composite wall i1s found of a 2.5cm copper plate, a 3.2mm
layer of asbestos, and a 5cm layer of fiberglass. The wall is
subjected to an overall temperature difference of 560°C.
Calculate the heat flow per unit area through the composite
structure.

An outside wall for a building consists of a 10cm layer of
commeon brick and a 2.5cm layer of fiberglass [k=0.05W/m.°C].
Calculate the heat flow through the wall for a 45°C temperature
differential.

A plane wall is constructed of a material having a thermal
conductivity that varies as the square of the temperature
according to the relation [k=ku(1+BT2]. Derive an expression
for the heat transfer in such a wall.



3.9

3.10

A certain building wall consists of 15cm concrete
[k=12W/m.°C], 5cm of fiberglass insulation., and 3/8 in of
gypsum [k=0.06 W/m.°C]. The inside and outside convection
coefficients are 10 and 3.5 W/m™.°C, respectively. The outside
air temperature is 5°C. and the inside temperature is 25°C.
Calculate the over all heat transfer coefficient for the wall. the R
value, and the heat loss per unit area.

Consider a 1.2m high and 2m wide double —pane window
consisting of two 3mm thick of glass [k=0.78 W/m.°C]
separated by a 12mm stagnant air space [k=0.026 W/m.°C].
Determine the steady rate of heat transfer through this double-
pane window and the temperature of its inner surface for a day
during which the room is maintained at 24°Cwhile the
temperature of the outdoors is 45°C. Take the convection heat
transfer coefficients on the inner and outer surfaces of the
window to be h;=10 W/m2°C and hy,=25 W/m>°C. and
disregard any heat transfer by radiation.

3.13 A metal pipe with an outside diameter (OD) of 12cm is covered

with an insulation material [k=0.07W/m.°C] of 2.5cm thick. If
the outer pipe wall is at 100°C and the outer surface of the
insulation is at 20°C, find the heat loss from the pipe per meter
length.

Answer: 101W/m length



3.14 A metal pipe of 10cm OD is covered with a 2cm thick insulation

[k=0.07W/m.°C]. The heat loss from the pipe is 100W per
meter of length when the pipe surface is at 100°C. What is the
temperature of the outer surface of the insulation? Answer:
23.5°¢

3.15 A 5cm OD and 0.5cm thick copper pipe [k=386W/m.’C] has hot

3.16

gas flowing inside at a temperature of 200°C with a heat
transfer coefficient of 30W/m".°C. The outer surface dissipates
heat by convection into the ambient air at 20°C with a heat
transfer coefficient of 15W/m”.°C. determine the heat loss from
the pipe per meter length.

Answer: 261W/m length

A brass condenser tube [k=115W/m.°C] with an outside
diameter of 2cm and a thickness of 0.2cm 1s used to condense
steam on its outer surface at 50°C with a heat transfer
coefficient of 2000W/m>.°C. Cooling water at 20°C with a heat
transfer coefficient of 5000W/m>.°C flows inside. (a) Determine
the overall heat transfer coefficient based of the outer surface
and the heat flow rate from the steam to the cooling water per
meter of length of the tube. (b) What would be the heat transfer
rate per meter of length of the tube if the outer and mmner
surfaces of the tube were at 50°C and 20°C. respectively?

Compare this result with (a), and explain the reason for the
difference between the two results.



3.17 A steel mube [k=15W/m.”C] with an outside diameter of 7.6cm

end a thickness of 1.3cm is covered with an imsulation material
[k=02W/m."C| 2cm thick. A hot gas at 330°C with a heat
transfer coefficient of 400W/m>.°C . flows inside the fmbe. The
onter snrface of the insnlation is exposed to conler air at 30°C
with a heat transfer coefficient of 60W/m”.°C. Calculate the heat
loss from the tube to the air for a 10m length of the tube.
Answer: T453W

3.18 Consider pipe of inside radins r1=2cm, outside radius r;=4cm,

3.19

end thermal conductivity [k;=10W/m.°C]. The inside surfacc is
maintained at a uniform temperature T,=300°C. and the outside
surface 1s to be insulated with an insulation material of thermal
conductivity [k;=0.1W/m."C]. The outside surface of the
insulation material 15 exposed to an environment at Te=20°C
with a heat transfer coefficient hyy—10W/m”.°C. Develop an
expression for determining the thickness L of the msulation
material needed to reduce the heat loss by 30 percent of that of
the uninsulated pipe exposed to the samz enviromment
cond:tion.
Answer: 0.0062m

A steel tube [k=13W/m.°C] with an outside diameter of 7.6cm
end a thickness of 1.3cm is covered with an insulation
[k=02W/m.“C] 2cm thick. A hot gas with a heat transfer
coelficient of 400W/ml.°C. fows inside (he (ube, and (he
vulside surlace ol the msulation 15 exposed (o cooler ar wilh a
heat transfer coefficient of 60W/m*.°C. Calculate the overall
heat transfer coefficient U based on the outside surface area of
the insulation.



3.20 A cylindrical steam pipe having an inside surface temperature of
250°C has an inside diameter of 8cm and a wall thickness of

5.5mm. It is covered with a 9cm layer of insulation having
k=0.5W/m.°C. followed by a 4cm layer of insulation having
k=0.25W/m.°C. The outside temperature of the insulation is
20°C. Calculate the heat lost per meter of length. Assume
k=47W/m.°C foe the pipe.

3.21 Consider a hollow sphere with an inner radius of S5em and outer
radius of 6em. The inner surface is kept at 100°C. and the outer
surface at 50°C, Determine the heat loss from the sphere if it is
made of pure copper [k=387W/m.°C], pure aluminum
[k=200W/m.’C]. and pure iron [k=62W/m.°C].

Answer: 72.95kW, 37.7kW, 11.69kW

3.22 A 6cm OD, 2cm thick copper hollow sphere [k=386W/m.’C] is
uniformly heated at the inner surface at a rate of 150W/m’. The
outside surface is cooled with air at 20°% with a heat transfer
coefficient of 10W/m’.°C. Calculate the temperature of the
outer surface.

Answer: 21.7°C

3.23 A spherical tank, 1m in diameter, is maintained at a temperature

of 120°C and exposed to a convection environment . with

=25W/m>.°C and T,=15°C, what thickness of urethane foam
should be added to ensure temperature of the insulation does not
exceed 40°C? What percentage reduction in heat loss results
from installing this insulation.



3.24 A hollow sphere i1s constructed of aluminum with an inner
diameter of 4cm and an outer diameter of 8cm. The inside
temperature is 100°C and the outer temperature is 50°C.
Calculate the heat transfer.

3.25 Consider a hollow steel sphere [k=15W/m.°C] with an inside
radius of 5cm and an outside radius of 10cm. The outside
surface 1s to be insulated with a fiberglass insulation
[k=0.05W/m.°C} to reduce the heat flow rate through the sphere
wall by 50 percent. Determine the thickness of the fiberglass.
Answer: 0.05cm

3.26 A steel tube [k=15W/m.°C] with an outside diameter of 7.6cm
and a thickness of 1.3cm is covered with an insulation
[k=0.2W/m.°C] 2cm thick. A hot gas with a heat transfer
coefficient of 400W/m>°C flows inside the tube . and the outer
surface of the insulation is exposed to cooler air with a heat
transfer coefficient of 60W/m”°C. Calculate the overall heat
transfer coefficient U based on the outside surface area of the
insulation.

3.27 A 2mm diameter and 10m long electric wire 1s tightly wrapped
with a Imm thick plastic cover whose thermal conductivity is
k=0.15W/m.’C. Electrical measurements indicate that a current
of 10A passes through the wire and there 1s a voltage drop of
8V along the wire. If the insulated wire 1s exposed to a medium
at To=30°C with a heat transfer coefficient of h=18Wf1112.°C,
determine the temperature at the interface of the wire and the
plastic cover in steady operation. Also determine if doubling the
thickness of the plastic cover will increase or decrease this
interface temperature.



3.28 A 5mm diameter spherical ball at 50°C is covered by a lmm
thick plastic insulation [k=0.13W/m.°C]. The ball is exposed to
a medium at 15°C. with a combined convection and radiation
heat transfer coefficient of 20W/m”.°C. Determine if the plastic

insulation on the ball will help or hurt heat transfer from the
ball.

3.29 A 1.0mm diameter wire is maintained at a temperature of 400°C
and exposed to a convection environment at 40°C. with
h=20W/m>.°C. Calculate the thermal conductivity which will
just cause an msulation thickness of 0.2mum to reduce a "crifical
radius". How much of this insulation must be added to reduce
the heat transfer by 75% from that which would be experienced
by the bare wire?

3.30 Consider a 5-m-high, 8-m-long, and 0.22-m-thick wall
whose representative cross section is as given in the figure. The
thermal conductivities of various materials used, in W/m - °C,
are ky = kg = 2, kg = 8, ke = 20, kp = 15, and kg = 35. The
left and right surfaces of the wall are maintained at uniform
temperatures of 300°C and 100°C, respectively. Assuming heat
transfer through the wall to be one-dimensional, determine
(a) the rate of heat transfer through the wall; (b) the tem-
perature at the point where the sections B, D, and E meet; and
(¢) the temperature drop across the section F. Disregard any
contact resistances at the interfaces.




T, =—4°C

cut —

3.31 A 5-m-wide, 4-m-high, and 40-m-long kiln used to cure WCm "~
concrete pipes is made of 20-cm-thick concrete walls and ceil- ot
ing (k = 0.9 W/m - °C). The kiln is maintained at 40°C by in- e

jecting hot steam into it. The two ends of the kiln, 4 m X 5 m
in size, are made of a 3-mm-thick sheet metal covered with _
2-cm-thick Styrofoam (k = 0.033 W/m - °C). The convection I —40°C —

; : Am -
heat transfer coefficients on the inner and the outer surfaces of //f

the kiln are 3000 W/m? - °C and 25 W/m? - °C, respectively. 4
Disregarding any heat loss through the floor, determine the rate . 4
of heat loss from the kiln when the ambient air is at —4°C. s
3.32 Considera 1.2-m-high and 2-m-wide double-pane win- e
dow consisting of two 3-mm-thick layers of glass (k = 0.78 = =
W/m - °C) separated by a 12-mm-wide stagnant air space (k = e

0.026 W/m - °C). Determine the steady rate of heat transfer
through this double-pane window and the temperature of its
inner surface for a day during which the room is maintained .
at 24°C while the temperature of the outdoors is —5°C. Take
the convection heat transfer coefficients on the inner and outer




3—6 HEAT TRANSFER FROM FINNED SURFACES

The rate of heat transfer from a surface at a temperature T_ to the surrounding
medium at T, is given by Newton’s law of cooling as

annv = hﬁs{Ts = Tuc)

where A, is the heat transfer surface area and £ is the convection heat transfer
coefficient. When the temperatures T, and T, are fixed by design considera-
tions, as is often the case, there are fwo ways to increase the rate of heat trans-
fer: to increase the convection heat transfer coefficient I or to increase the
surface area A,. Increasing /i may require the installation of a pump or fan, or
replacing the existing one with a larger one, but this approach may or may not
be practical. Besides, it may not be adequate. The alternative is to increase the
surface area by attaching to the surface extended surfaces called fins made of
highly conductive materials such as aluminum. Finned surfaces are manu-
factured by extruding, welding, or wrapping a thin metal sheet on a surface.
Fins enhance heat transfer from a surface by exposing a larger surface area to
convection and radiation.

Finned surfaces are commonly used in practice to enhance heat transfer, and
they often increase the rate of heat transfer from a surface severalfold. The car
radiator shown in Fig. 3-33 is an example of a finned surface. The closely
packed thin metal sheets attached to the hot water tubes increase the surface
area for convection and thus the rate of convection heat transfer from the tubes
to the air many times. There are a variety of innovative fin designs available
in the market, and they seem to be limited only by imagination (Fig. 3-34).

FIGURE 334



Fin Equation
Consider a volume element of a fin at location x having a length of Ax, cross-

sectional area of A, and a perimeter of p, as shown in Fig. 3-35. Under steady
conditions, the energy balance on this volume element can be expressed as

Rate of heat Rate of heat Rate of heat
conduction into | = | conduction from the | + | convection from
the element at x element at x + Ax the element

and, x Q cond, x + Ax + an\' Yolume

element
where

anv = h{p M}{T - Tuc)

Substituting and dividing by Ax, we obtain

Q cond, x +Ax annd__.r

v +hp(T—T.) =0
Taking the limit as Ax — 0 gives
{iQCDnd -
o th(T—T.)=0 d |
From Fourier’s law of heat conduction we have
: aT o
chnd = _Mca '\\L Ax
where Ac is the cross-sectional area of the fin at location x. Ty
Substitution of this relation into Eq. a gives the differential FIGURE 3-35
equation governing heat transfer in fins, :
g & & Volume element of a fin at location x
% (kﬂcg) —hp(T—-T,)=0 b having a length of Ax, cross-sectional

area of A, and perimeter of p.



In general, the cross-sectional area Ac and the perimeter p of a fin vary with x, which makes this
differential equation difficult to solve. In the special case of constant cross section and constant thermal
conductivity, the differential equation b reduces to

a0

PO af =10 C
where
L hp
ol
and § = T — T, is the temperature excess. At the fin base we have
Hb = Tb = Tm.

Therefore, the general solution of the differential equation Eqg. c is
8(x) = Ce™ + CGe = d
where C, and C, are arbitrary constants whose values are to be determined

from the boundary conditions at the base and at the tip of the fin. Note that we
need only two conditions to determine C; and C, uniquely.

specified temperature, negligible heat loss (idealized as g +L "
an insulated tip), convection, and combined convection ~— %
and radiation (Fig. 3—36). Next, we consider each case Specified

separately. temperature

At the fin tip we have several possibilities, including T.;E:
0

{a) Specified temperature
(&) Neghgible heat loss

{¢) Convection

{¢f} Convection and radiation

FIGURE 3-36



1 Infinitely Long Fin (Tq, 4, = T..)

For long fin of uniform cross section (A.=constant) the
temperature at the fin tip will approach the environment temperature
T and 6 will approach zero. That is
Boundary condition at fin tip 6(L)=T(L)-T,=0 as L
By substituting these two boundary conditions in equation { d ) we

gEt —= o
B.C.1 8 =C +C, B.C2 0=Ce +Ce

From second boundary equation, we note that e~ —0 so C;z0 then

C g:U.

Then from B.C.1 equation we get that C;=0,

The final equation of temperature distribution through a long fin is
Very long fin: % = =0 = o—¥\/TpiTA;

The steady rate of heat transfer from the entire fin can be determined

from Fourier's law of heat conduction

Qhrgj‘rr = —kd {ff_i_—l ; =—kd g — —ﬂ:e[ﬂﬂn {f(ﬁ_;im ”‘
— 148, (_ Jip kA, }.:‘W
=L

Then

where p is the perimeter, A, is the cross-sectional area of the fin,
and x is the distance from the fin base
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[
Tx)=T.+ (T, -T,)e kA,
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(p=nD,A .= xD2/4 for a cylindrical fin)
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The rate of heat transfer from the fin could also be determined by
considering heat transfer from a differential volume element of the fir
and inteerating it over the entire surface of the fin. That is

2 Negligible Heat Loss from the Fin Tip
(Insulated fin tip, 8, 4, = 0)

Fins are not likely to be so long that their temperature approaches the sur-
rounding temperature at the tip. A more realistic situation is for heat transfer
from the fin tip to be negligible since the heat transfer from the fin is propor-
tional to its surface area, and the surface area of the fin tip is usually a negli-
gible fraction of the total fin area. Then the fin tip can be assumed to be
insulated, and the condition at the fin tip can be expressed as

Boundary condition at fin tip: 2 =0
d.lf =L
Boundary condition at fin base: ) =, =T~ T,

The application of these two conditions on the general solution (Eq. d) yields, after some
manipulations, this relation for the temperature distribution

TI(x)— T, cosha(L—x)

F—F, ~ " coshalL

The rate of heat transfer from the fin can be determined again from Fourier’s

law of heat conduction:

Adiabatic fin tip:

. . . . ar
Adiabatic fin tip: Q insulnea ip = —KA, T
=0

= \hpkA, (T, — T,) tanh aL



Convection (or Combined Convection and Radiation)
from Fin Tip

The fin tips, are exposed to the surroundings, and thus the proper boundary condition for the fin tip
is convection that also includes the effects of radiation. The fin equation can still be solved in this
case using the convection at the fin tip as the second boundary condition. This condition for the fin
tip is

Boundary condition at fin base: BN =4, =T, =1,

The application of these two conditions on the general solution (Eq. d) yields, after some
manipulations, this relation for the temperature distribution

the heat transfer from this fin can be expressed in the same way at it is done for the previous two
type and it will be as




Fin Efficiency

Consider the surface of a plane wall at temperature T, exposed to a medium at
temperature T... Heat 1s lost from the surface to the surrounding medium by
convection with a heat transfer coefficient of /. Disregarding radiation or
accounting for its contribution in the convection coefficient f, heat transfer
from a surface area A, is expressed as 0 = hA_(T, — T..).

Now let us consider a fin of constant cross-sectional area A, = A, and length
L that 1s attached to the surface with a perfect contact (Fig. 3-4(0). This time
heat will flow from the surface to the fin by conduction and from the fin to the
surrounding medium by convection with the same heat transfer coefficient A.
The temperature of the fin will be T}, at the fin base and gradually decrease to-
ward the fin tip. Convection from the fin surface causes the temperature at any
cross section to drop somewhat from the midsection toward the outer surfaces.
However, the cross-sectional area of the fins is usually very small, and thus
the temperature at any cross section can be considered to be uniform. Also, the
fin tip can be assumed for convenience and simplicity to be insulated by using
the corrected length for the fin instead of the actual length.

In the limiting case of zero thermal resistance or nfinite thermal conduc-

tivity (k — =), the temperature of the fin will be uniform at the base value of
T,. The heat transfer from the fin will be maximum in this case and can be
expressed as

Qﬁn. max h‘qﬂn (TE: - T:r:'

<

Abzwxf

(a) Surface without fins
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/ fin
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{b) Surface with a fin

A =2 xwxL+wxt

fin
=2 xwx L

FIGURE 3-40



In reality, however, the temperature of the fin will drop along the fin, and
thus the heat transfer from the fin will be less because of the decreasing tem-
perature difference T(x) — T, toward the fin tip, as shown in Fig. 3-41. To ac-
count for the effect of this decrease in temperature on heat transfer, we define
a fin efficiency as

_ O, _ _ Actual heat transfer rate from the fin
Tlein i r— [deal heat transfer rate from the fin
if the entire fin were at base temperature

O sin = Miin © sin, max = Mein M (T — T-2)

where Ag_ is the total surface area of the fin. This relation enables us to deter-
mine the heat transfer from a fin when its efficiency is known. For the cases
of constant cross section of very long fins and fins with insulated tips, the fin
efficiency can be expressed as

O tin - VIPRA (T, — T5.) ) kA, 1

MAm(T,—T) L\mp ar 2nd

ﬂ!ung fin

Q fin, max

Om _ VApKA (T, — T.)tanhaL _ (anhal
B hAL (T, — To)  aL

Tinsulated tip =
Q fin, max

since A, = pL for fins with constant cross section.



Fin efficiency relations are developed for fins of various profiles and are
plotted in Fig. 3-42 for fins on a plain surface and in Fig. 3-43 for circular
fins of constant thickness. The fin surface area associated with each profile is
also given on each figure. For most fins of constant thickness encountered in
practice, the fin thickness ¢ 1s too small relative to the fin length L, and thus

the fin tip area is negligible.
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Fin Effectiveness

Fins are used to enhance heat transfer, and the use of fins on a surface cannot
be recommended unless the enhancement in heat transfer justifies the added
cost and complexity associated with the fins. In fact, there is no assurance that
adding fins on a surface will enfiance heat transfer. The performance of the
fins is judged on the basis of the enhancement in heat transfer relative to the
no-fin case. The performance of fins expressed in terms of the fin effectiveness

&g, 18 defined as (Fig. 3-44)

_ . Heat transfer rate from
Q i Q i the fin of base area A,

O hA,(T,—T,) Heat transfer rate from
= no fin b b
the surface of area A,

Efin =

Note that both the fin efficiency and fin effectiveness are related to the per-
formance of the fin, but they are different quantities. However, they are
related to each other by

O in 0 _ Man A (T — Te)  Apg

E = = s+ b m—  m d
" @ o fin hAy (T, — T.,) hA, (T, — T) Ap b

Therefore, the fin effectiveness can be determined easily when the fin effi-
ciency 1s known, or vice versa.

The effectiveness of such a long fin is determined to be
Q fin_ _ Vhpmn (T.TJ T Tsc} Sl |IE
0 Ay (T, — T..) VhA,

= nofin

El-’.mg fin —

Tb égnuﬁn
A.ﬂ'
Qﬂn
T, /Q‘l l , )
£ S\
L
FIGURE 344



Example 3.7
Copper-plate fins of rectangular cross section having a thickness t=1mm, height L=10mm, and thermal

conductivity k=380W/m.°C are attached to a plane wall maintained at a temperature T,=230°C. The fins
dissipate heat by convection into ambient at T__=30°C with a heat transfer coefficient h=40W/m?2.°C.

Assuming negligible heat loss from the fin tip determine the fin efficiency

Solution
to determine the fin efficiency, we first calculate the parameter mL as follows




Example 3.8

A steel rod of diameter D=2cm, length L=10cm, and thermal conductivity k=50W/m.°C. is exposed to
ambient air at T_ =20°C with a heat transfer coefficient h=30W/m?2.°C. If one end of the rod is
maintained at a temperature of 70°C. calculate the heat loss from the rod.

Solution

we can assume the rod to be a fin of the second type because it has a finite length. At the beginning
we can calculate mL

now to find the temperature at the other end where x=L

T ) — -l o= 10 -soowrc



EXAMPLE 3-9 Effect of Fins on Heat Transfer from Steam Pipes o

Steam in a heating system flows through tubes whose outer diameter is
[, = 3 cm and whose walls are maintained at a temperature of 120°C. Circu- 0
lar aluminum fins (kA = 180 W/m - °C) of outer diameter [, = 6 ¢m and con-
stant thickness = 2 mm are attached to the tube, as shown in Fig. 3-48. The
space between the fins is 3 mm, and thus there are 200 fins per meter length
of the tube. Heat is transferred to the surrounding air at 7, = 25°C, with a com-
bined heat transfer coefficient of i = 60 W/m=? - °C. Determine the increase in
heat transfer from the tube per meter of its length as a result of adding fins.

SOLUTION

Analysis In the case of no fins, heat transfer from the tube per meter of its
length is determined from Mewton's law of cooling to be

6U

Fin efficiency 1, percant

1.0 1.5 2.0 2.5

E=(L+i)VhiE
A pe = DL = w(0.03 m)(1 m) = 0.0942 m? e
an = A (T — ) ro=3cmf— o7 " ri=13cm
= (60 W/m* - °C)(0.0942 m?)(120 — 25)°C
=537TW Em
The efficiency of the circular fins attached to a circular tube is plotted in Fig. '
3-43. Noting that L = XD, — D) = }(0.06 — 0.03) = 0.015 m in this case, Iy ol
we ha'lule .D_Izzlﬂ:lﬂ
S=3 mm

] !
Iy + EI B (0.03 + 5 > 0.002) m

T 0.015 m —tl o= 008 L\__)_
| B | |

|_ 2 o
1y [ i [ 60wWm*°Cc  _
L +50) g = 0015+ X 0.002) m X a5 3wm - scy0.602.m) = 0207

=
Apy = 2m(rf — rf) + 2ot
= 27[(0.03 m)? — (0.015 m)?] + 27(0.03 m)(0.002 m)
= (0.00462 m?



Qﬁn = TlﬂnQ fin, max ﬂﬁnh‘qﬁn (T.D — 1)
= (0.95(60 W/m= - °C)(0.00462 m?)(120 — 25)°C
=25.0W

Heat transfer from the unfinned portion of the tube is

Aypn = 8 = w(0.03 m)(0.003 m) = 0.000283 m?
Qunﬁn = ‘qunﬁn{'rb - TT)
= (60 W/m? - °C)(0.000283 m*)(120 — 25)°C
= 1.60W

Noting that there are 200 fins and thus 200 interfin spacings per meter length
of the tube, the total heat transfer from the finned tube becomes

Qmm_ fin — fI{Qﬁn o Qunﬁn) = 200025.0 + 1.6) W = 5320 W

Therefare, the increase in heat transfer from the tube per meter of its length a
a result of the addition of fins is

Qinerese = Cuotat tin — Pnonin = 5320 — 537 = 4783 W (per m tube length)
Discussion The overall effectiveness of the finned tube is

thul_ fin  5320W

337TW A

Et'm. overall Q
total, no fin

That is, the rate of heat transfer from the steam tube increases by a factor of
almost 10 as a result of adding fins. This explains the widespread use of finned
surfaces.

r,=3cm

P = 1.5cm




Problems Group B



Alyminum fins of rcctangular profile are attachzd cn a plane
wall. The fins have thicknes: =1lmm., length L=10mm, and
thenmal condvetivity k2000 . The will 15 nintained al a
temperdlvze L, 200°%C, aud  the (o dissipaie heal by
convection into the ambient air at T-=40"C with a heat transter
coefficient h.=50W/m".°C. Determine the fine efficiency.
Angwer: 0,98

Circular aluminum fins of constant rcetangular prefile are
attached 1o a tube of outzids diamcter D=5¢m. The fins have
thckaess | 2oon, heaghl L 153owmn, smd (henoal condoclivily
k 200W/an °C. The lube surfice 1s wmainined al o unilonn
temperatiire To=200"C, and the fines dissipatz hear hy
convection into the ambient air at T-=30"C with a heat transter
coefficisnt h.=50W/m’ "C. Determine the fin efficiency.
Angwer: 095

An iron rod of lengrh L=3Cen. diamcter D=1lcnl, and thermal
conductivity k=63W/m."C is attached herizontelly to a large
tank al temperatore L, 200°C. The 1od is dissipatine heal Ly
convection into ambient air at T..=20°C with a heat transter
coefficient h ,,:.=I.‘S"»?'I:'|nj_"{':. What is the temperanire of the rad
at distances of 10 and Z0cm from the tank surfacs?
Answer: 90.1°C, 50°C

An aluminum fin of rcctangular profile has a thickness =2mm,
length L=20mm.. and thermal conductivity E=200W/m.°C.
Heal 15 thsaipaled rom the Iin by convechon inla amlaent s sl

T,=20°C with a hear transfer coxfSicient h,=40W/m" "C. If the
fin base is at 'I'.=130°C, calculate the fin into the ambisnt air.

A long, thin copper 6.4mm in diameter is exposed to an
covironment at 20°C. The bascd remperatue of dhe rod is
150°%C. The heal mansfer coeTicient belween the rad amd the
environment is 24W/m>.°C. Calculare the heat civen up by the
rod.

A very long copper Tod |k=372W/.°C| 2.5¢in 1w dismneter has
one end maintained at 90°C. The rod is exposed fo a thuid
whose temperature i= 40°C. The heat transter coefficient is
3 5W/mESC. Fow much heat is lost by the 1ad?.

An aluminum fin | .6émm thick is placed on a eircular tube with
2.5cm OD. The fin 15 6.4mm long. The tube wall 1= maintained
at 150°C. the cnvironment temperature is 15°C, and the
convection hest transfer coetficient is 23W/ni®.°C. Calculate
the heat 1ost by rhe fin.

A straight reerangnlar fin af stcel (1%C) 15 2.6em thick and
[7cm long. It 13 placed on (he vulside of & wall wluch
maintaincd at 220°C. The surrounding air temperature is 25°C,
and (he conveclon lieal tansler coellicient is 23W/l.°C,
Calculate the heat lost from the fin per vair depth and the fin
elliciency.

A lrnaular o ol stamless sleal (18%cr, 89 Ni) 14 attachzd Lo
a plane wall maintained at 460°C. The fin thicknsss is 6 4mm,
and (he lengih 1s 2.5¢cm. The envionment s al 93°C. aud the
convection heat transfer coefficient is 28W/m*°C. Calculate

the hezt lost from the fin.

A 2.3cm dizmeter tube has circumferential fins of rectanzular
profile spaced at Y. 2numn merements along its length, 'The fins
are comstructed of aluminum and are 0. 8mm rhick and 12 3mm
leng. Ths tube wall tempsrature is maintained at 200°C, and the
enviranment remperature 18 93°C. The haat transfer coefficient
s llﬂ"‘ﬁﬂulz.o'f.', calculate the heat loss from the tube per mster
aT lengrh.



An glummum [m 1.6mn ek summounds a lubg 2.5¢m
cdiameter. The length of the fin is 12 Smum. The twbe wall
remperature is 200°C, and the environment rteniperature is
20°C. The heat transfer coefficient is 60W/m™ “C. What is the

heat lost by the fin?

A Tong stainless atcel rod [k=16Wim.°C] has a squarc cross
seciion 12.5 by 12.5mn and has vne end wamitaimed al 250°C.
The heat trapsfer cocfficicnt is  40W/m °C, and the
enviromment remperature is 90°C. Caleulate the hizat lost by the
rod.

Steam in a heating system flows through tubes whose
outer diameter is 5 cm and whose walls are maintained at a
temperature of 180°C. Circular aluminum alloy 2024-T6 fins
(k= 186 W/m - °C) of outer diameter 6 cm and constant thick-
ness 1 mm are attached to the tube. The space between the fins
is 3 mm, and thus there are 250 fins per meter length of the
tube. Heat is transferred to the surrounding air at 7. = 25°C,
with a heat transfer coefficient of 40 W/m?® - °C. Determine the

increase in heat transfer from the tube per meter of its length as
Answer: 2639 W

a result of adding fins.

A hot surface at 100°C is to be cooled by attach-
ing 3-cm-long, 0.25-cm-diameter aluminum pin fins (K =
237 W/m - °C) to it, with a center-to-center distance of 0.6 cm.
The temperature of the surrounding medium is 30°C, and the
heat transfer coefficient on the surfaces is 35 W/m? - °C.
Determine the rate of heat transfer from the surface for a
1-m > 1-m section of the plate. Also determine the overall
effectiveness of the fins.




