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CHAPTER FOUR TRANSIENT HEAT CONDUCTION

4-1 LUMPED SYSTEM ANALYSIS

4-2 TRANSIENT HEAT CONDUCTION IN LARGE PLANE WALLS,
LONG CYLINDERS, AND SPHERES WITH SPATIAL EFFECTS

4-3 TRANSIENT HEAT CONDUCTION IN SEMI-INFINITE SOLIDS

4-4 TRANSIENT HEAT CONDUCTION IN MULTIDIMENSIONAL
SYSTEMS



4-1 LUMPED SYSTEM ANALYSIS

Consider a small hot copper ball coming out of an oven (Fig. 4-1). Mea-
surements indicate that the temperature of the copper ball changes with time,
but it does not change much with position at any given time. Thus the tem-
perature of the ball remains uniform at all times, and we can talk about the
temperature of the ball with no reference to a specific location.

Now let us go to the other extreme and consider a large roast in an oven. If
you have done any roasting, you must have noticed that the temperature dis-
tribution within the roast is not even close to being uniform. You can easily
verify this by taking the roast out before it is completely done and cutting it in
half. You will see that the outer parts of the roast are well done while the cen-
ter part is barely warm. Thus, lumped system analysis is not applicable in this
case. Before presenting a criterion about applicability of lumped system
analysis, we develop the formulation associated with it.

Consider a body of arbitrary shape of mass m, volume V, surface area A_,
density p, and specific heat C, initially at a uniform temperature T; (Fig. 4-2).
At time f = 0, the body is placed into a medium at temperature T, and heat
transfer takes place between the body and its environment, with a heat trans-
fer coefficient h. For the sake of discussion, we will assume that T, = T, but
the analysis i1s equally valid for the opposite case. We assume lumped system
analysis to be applicable, so that the temperature remains uniform within the
body at all times and changes with time only, T'= T(1).
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FIGURE 41
A small copper ball can be modeled
as a lumped system, but a roast
beef cannot.
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During a differential time interval dt, the temperature of the body rises by a
differential amount d7. An energy balance of the solid for the time interval dt
can be expressed as

= | energy of the body

(Heat transfer into the body
during dt

The increase in the
during df )

hA(T,, — T) dt = mC, dT (@-1)

Noting that m = pVand dT = d(T — T..) since T, = constant, Eq. 4—1 can be
rearranged as

dT—T.)  hA,

T—T. 7 G,

dt (4-2)

Integrating from t = 0, at which T = T, to any time t, at which T' = T{1), gives

In % = — ;:f ép (4-3)
Taking the exponential of both sides and rearranging, we obtain
% — ol -4y Where
B hA (1/s) (4-5)
pVC,

is a positive quantity whose dimension is (time)~!. The reciprocal of b has
time unit (usually s), and is called the time constant. Equation 4 is plotted
in Fig. 4-3 for different values of b.°
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The temperature of a lumped
system approaches the environment
temperature as time gets larger.




Once the temperature 7(¢) at time ¢ is available from Eq. 44, the rate of con-
vection heat transfer between the body and its environment at that time can be
determined from Newton’s law of cooling as

O(f) = hA [T(1) — T..] (W) (4-6)

The total amount of heat transfer between the body and the surrounding
medium over the time interval £ = 0 to ¢ is simply the change in the energy
content of the body:

@ = mC,[T(f) — T}] (k1) (4-7)

The amount of heat transfer reaches its upper limit when the body reaches the
surrounding temperature 7T,,. Therefore, the maximum heat transfer between
the body and its surroundings is (Fig. 4—4)

Opmax = MCT.. — T)) (kJ) (a-8)

We could also obtain this equation by substituting the 7(7) relation from Eq.
4—4 into the @ (1) relation in Eq. 4-6 and integrating it from t = 0 to ¢t — c=.

ICrtteria for Lumped System Analysis|

The lumped system analysis certainly provides great convenience in heat
transfer analysis, and naturally we would like to know when it is appropriate
to use it. The first step in establishing a criterion for the applicability of the
lumped system analysis is to define a characteristic length as

and a Biot number Bi as

hL,

Bi = e (4-9)

It can also be expressed as (Fig. 4-5)

i h AT Convection at the surface of the body . Lk
P — _

0 = Oy =mC, (T,—T,)
FIGURE 44

Heat transfer to or from a body
reaches its maximum value
when the body reaches

the environment temperature.
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When this criterion is satisfied, the temperatures within the body relative to
the surroundings (i.e., T — T.)) remain within 5 percent of each other even for
well-rounded geometries such as a spherical ball. Thus, when Bi < 0.1, the
variation of temperature with location within the body will be slight and can
reasonably be approximated as being uniform.

The first step in the application of lumped system analysis is the calculation
of the Biot number, and the assessment of the applicability of this approach.
One may still wish to use lumped system analysis even when the criterion
Bi < 0.1 is not satisfied, if high accuracy 1s not a major concern.

Note that the Biot number is the ratio of the convection at the surface to con-
duction within the body, and this number should be as small as possible for
lumped system analysis to be applicable. Therefore, small bodies with high
thermal conductivity are good candidates for lumped system analysis, es-
pecially when they are in a medium that is a poor conductor of heat (such as
air or another gas) and motionless. Thus, the hot small copper ball placed in
quiescent air, discussed earlier, is most likely to satisfy the criterion for
lumped system analysis (Fig. 4-6).

h=15 W/m2.°C

Spherical
Copper
ball

k=401 W/m-"C
D=12cm

1 2p3
e X8 1p. 060 m

A, mpb?2 ©
. hL. 15x0.02 _
Bi= T = 01 =0.00075 < 0.1
FIGURE 4-6

Small bodies with high thermal
conductivities and low convection
coefficients are most likely

to satisfy the criterion for

lumped system analysis.



EXAMPLE 4—1 Temperature Measurement by Thermocouples

The temperature of a gas stream is to be measured by a thermocouple whose
junction can be approximated as a 1-mm-diameter sphere, as shown in Fig.
4-9. The properties of the junction are kK = 35 W/m - °C, p = 8500 kg/m?, and

C, = 320 J/kg - °C, and the convection heat transfer coefficient between the Thﬂi'm?m'-lph
junction and the gas is A = 210 W/m? - °C. Determine how long it will take for e
the thermocouple to read 99 percent of the initial temperature difference. [
SOLUTION
The characteristic length of the junction is
| . Gas
T =£=EWD =1D=1(DDDI m) = 1.67 X 10*m Tr b —™ Junction
© A wD® 6 6" ' - — 5
Then the Biot number becomes —

nL 210 W/m? - °C)(1.67 X 107% D=1 mm
! 11 s 67 X 107*m
S 4 ) _ 0.001 < 0.1 T(r)

K 35 W/im - °C FIGURE 4-9

Therefore, lumped system analysis is applicable, and the error involved in this
approximation is negligible.

In order to read 99 percent of the initial temperature difference 7; — 7.
between the junction and the gas, we must have

S5 5 1 o8 For example, when 7; = 0°C and 7., = 100°C, a thermocouple is considered to

T =, = 0.01 have read 99 percent of this applied temperature difference when its reading
indicates T{f) = 99°C.

The value of the exponent b is

Bi =

. S B 210 W/m? - °C e i o
pC,V  pC,L. (8500 kg/m*)(320 J/kg - °C)(1.67 X 10~*m)
(o ¢ N 2
L 6 MR e — p— (04625 —— = |l g
T — T, e — .01 e

Therefore, we must wait at least 10 s for the temperature of the thermocouple

junction to approach within 1 percent of the initial junction-gas temperature
difference.



EXAMPLE 4-2 Predicting the Time of Death

A person is found dead at 5 PM in a room whose temperature is 20°C. The tem-
perature of the body is measured to be 25°C when found, and the heat trans-
fer coefficient is estimated to be i = 8 W/m?2 . °C. Modeling the body as a
30-cm-diameter, 1.70-m-long cylinder, estimate the time of death of that per-
son (Fig. 4-10).

SOLUTION

Properties The average human body is 72 percent water by mass, and thus we
can assume the body to have the properties of water at the average temperature
of (37 + 25)2 = 31°C; k= 0.617 W/m - °C, p = 996 kg/m3, and C, = 4178
Jikg - °C

The characteristic length of the body is

vV wr? L _ w(0.15 m)*(1.7 m)

s e 2mr, L+ 2wr2  2w(0.15 m)(1.7 m) + 27(0.15 m)>
Then the Biot number becomes

hL. (8 W/m? - °C)(0.0689 m) —
ko 0.617 W/m - °C o ' FIGURE 4-10

Therefare, lumped system analysis is nof applicable. However, we can still use
it to get a "rough™ estimate of the time of death. The exponent & in this case is

= 0.0689 m

Bi =

- fiA, _ R _ 8 W/m? - °C
pC, vV pC, L. (996 kg/m?) (4178 J/kg - °C)(0.0689 m)
=279 % 10 55!
r{)— 7. — bt 3 25 — 20 _ e~ 2Px103shr —— =43 860s =122 1
T 37 — 20

Therefaore, as a rough estimate, the person died about 12 h before the body was
found, and thus the time of death is 5 am.



4-2 TRANSIENT HEAT CONDUCTION IN LARGE PLANE WALLS, LONG CYLINDERS, AND SPHERES WITH

SPATIAL EFFECTS

In Section, 4-1, we considered bodies in which the variation of temperature
within the body was negligible; that is, bodies that remain nearly isothermal
during a process. Relatively small bodies of highly conductive materials ap- T
proximate this behavior. In general, however, the temperature within a body i : h
will change from point to point as well as with time. In this section, we con-
sider the variation of temperature with fime and position in one-dimensional a "
problems such as those associated with a large plane wall, a long cylinder, and L x
a sphere. .
Consider a plane wall of thickness 2L, a long cylinder of radius r,, and
a sphere of radius r, initially at a uniform temperature T;, as shown in Fig.
4-11. At time f = 0, each geometry is placed in a large medium that is at a |
constant temperature T, and kept in that medium for ¢ = (. Heat transfer takes
place between these bodies and their environments by convection with a uni- {a) A large plane wall
form and constant heat transfer coefficient . Note that all three cases possess
geometric and thermal symmetry: the plane wall is symmetric about its cenfer
plane (x = (), the cylinder is symmetric about its centerline (r = 0), and the
sphere is symmetric about its center point (r = (). We neglect radiation heat T.| Initally ) 7
transfer between these bodies and their surrounding surfaces, or incorporate h i h
the radiation effect into the convection heat transfer coefficient /.

Initially T

r -r.l'

- Initially !
=T,

FIGURE 4-11
Schematic of the simple
geometries in which heat

transfer is one-dimensional. (7)) A long cylinder
(c) A sphere




The one-dimensional transient heat conduction problem just described can
be solved exactly for any of the three geometries, but the solution involves in-
finite series, which are difficult to deal with. Howewver, the terms 1n the solu-
tions converge rapidly with increasing time, and for T > 0.2, keeping the first
term and neglecting all the remaining terms in the series results in an error
under 2 percent. We are usually interested in the solution for times with
T = (.2, and thus it 1s very convenient to express the solution using this one-
term approximation, given as

Plane : s i 3
wall: (X, Dgan = T Aje™7cos (Ma/L), T>0.2
: I(r,1) — T, T
Cylinder: 8(r, Doy = e = A e~ N7 I (N, T3> 0.2
= i~ L
R, 1) — T 2 sin{ih,rir,)

: — " S s

SPIIEFE B[r-_- E)sph -_-!]---J . T.-.-; AJE }LI;'J";‘” ; 0

where the constants A, and A, are functions of the Bi number only, and their
values are listed in Table 4—1 against the Bi number for all three geometries.
The function J;; is the zeroth-order Bessel function of the first kind, whose
value can be determined from Table 4-2. Noting that cos (0) = Ji(0) = 1 and
the limit of (sin x)/x is also 1, these relations simplify to the next ones at the
center of a plane wall, cylinder, or sphere:

Tl 2
Center of plane wall (x = 0): Bo. wart = }':——T = A,e M7
i ne
x Trr? T T,cr =
Center of cylinder (r = 0): N [ AT
. r — T
T, — Ty 2
Center of sphere (r = 0): Bo,spn = T T - AeMr
i Lo

(4-10)

{4-11)

{4-12)

(4-13)

(4-14)

{4-15)



TAELE 4-1

Coetticients used in the one-term approximate soluticn of transient one-
dimensional heat conduction in plare walls, cylirders, and spheres (Bi = hL'k
for a plang wall cf thickness 2L, anc Bi = hr,/k for a cylinder or sphare of

TABLE 4-2

The zeroth- and first-order Besse
functions of zhe first kind

radius r,)
Plane Wall Cylinder Ephere

Bi Ay A X Ay % A,
0.0N 0.0998 1.0017 11412 1.00725 01730 1.0030
0.02 0.1410 1.0033 0.1995 1.0050 0.2445 1.0050
0.04 0.1987 1.0066 0.2814 1.0099 0.345D 1.0120
0.0 0.2425 1.0092 0,343 1.0148 04217 1.017¢
0.08 0.2791 1.0130 0.3860 1.0197 01860 1.023%9
0.1 0.3111 1.0161 0.4417 1.0246 0.6£423 1.0258
0.2 0.4328 1.0311 0.A170 1.0483 (.7h93 1.0R92
0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.0880
0.4 0.5932 1.0580 0.8516 1.0931 1.0528 1.1154
b 0.6bL33 1.0/01 J.9408 1.1143 1.16bo 1.1441
0.6 0.70561 1.08141 1.01841 1.134156 1.2611 1.1713
0.7 0.7506 1.0918 1.0873 1.1539 1.3525 1.1978
0.2 0.7910 1.1014 1.1480 1.1724 14320 1.2236
0.9 0.8274 13307 1.2C48 1.1902 1.5044 1.2488
1.0 0.8603 1.1191 1.2E58 1.2071 1.5708 1.2732
2.0 1.0/6Y 1.1/8hb 1.5484 1.33224 2.0288 1.4/93
3.0 1.1925 1.2102 1.7287 1.1191 2.2888 1.6227
4.0 1.2646 1.2287 1.89081 1.4698 2.4555 1.7202
50 1.3138 1.2403 1.9292 1.6029 2.h704 1.7870
6.0 1.3496 1.2479 20490 1.575L3 2 6h37 1.8338
7.0 1.3766 1.2532 2.0937 1.5411 2.7165 1.8672
5.0 1.39/8 1.25/0 2. 1286 1.b526 2./654 1.8920
9.0 1.1119 1.2598 2.1b566 1.6611 2.8011 1.910&6
10.0 1.4289 1.2620 2.1795 1.6677 2.8363 1.9249
20.0 1.49A1 1.2599 22880 1.5919 2 98RK7 1.9781
30.0 1.5202 1.2717 2.3261 1.5973 303772 1.9898
40.0 15325 1.2723 2.3455 1.5993 3.0632 1.994Z2
50.0 1.5400 1.2/2/ 2.3h/7 1.6002 3.0/88 1.9962
100.0 1.6652 1.2731 2.3809 1.60156 3.1102 1.9990
on 1.6708 1.2732 24048 1.6021 2.1£15 2.0000

£ JiE) ()
0.0 1.0000 0.0000
D.1 0.9975 0.0499
D.2 0.9900 0.0995
0.3 0.9776 0.1183
0.4 0.9604 0.1960
n.5 0.9385 0.2423
0.6 0.9120 0.2867
0.7 0.8812 0.3290
0.8 0.8463 0.3688
0.9 0.80/b 0.4059
1.0 0./6b2 0.4400
1.1 0.7196 0.4709
1.2 0.6711 0.4983
1.3 0.6201 0.5220
1.4 0.5669 0.5419
1.5 05118 0.56579
1.6 0.4554 0.5699
1.7 0.3980 0.5778
1.8 0.3400 0.5815
1.9 0.2818 0.5812
2.0 0.2239 0.5/6/
71 0.1666 0.5683
2.2 0.1104 0.5560
3.3 0.0bbb 0.5399
2.4 0.0025 0.5202
26 —0.0968 —0.4708
28 —0.1850 —0.4097
3.0 —0.2601 -0.3391
3.2 —0.3720727 —-02613



Note that the case 1/Bi = &/hL. = ( corresponds to ii — <, which corre-
sponds to the case of specified surface temperature T.. That 1s, the case in
which the surfaces of the body are suddenly brought to the temperature T,
at + = 0 and kept at T, at all imes can be handled by setting & to infinity

The temperature of the body changes from the initial temperature T to the
temperature of the surroundings T, at the end of the transient heat conduction
process. Thus, the maximum amount of heat that a body can gain (or lose if
T, > T.) is simply the clhange in the energy content of the body. That 1s,

Omax = j”Cp(T’n = PI"ICF(T:-: = T3} (kJ) (4-16)

Once the Bl number is known, the above relations can be used to determine
the temperature anywhere in the medium. The determination of the constants
A, and X\, usually requires interpolation. For those who prefer reading charts
to interpolating, the relations above are plotted and the one-term approxima-
tion solutions are presented in graphical form, known as the transient temper-
ature charts. Note that the charts are sometimes difficult to read, and they are
subject to reading errors. Therefore, the relations above should be preferred to
the charts.

The transient temperature charts in Figs. 4-13, 4-14, and 415 for a large
plane wall, long cylinder, and sphere were presented by M. P. Heisler in 1947
and are called Heisler charts. They were supplemented in 1961 with transient
heat transfer charts by H. Griber. There are three charts associated with each
geometry: the first chart is to determine the temperature 7, at the center of the
geometry at a given time f. The second chart is to determine the temperature
at other locations at the same time in terms of T,. The third chart is to deter-
mine the total amount of heat transfer up to the time t. These plots are valid
for v > 0.2.



() Heat transfer (from H. Grober et al)
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The fraction of heat transfer can also be determined from these felatinns,
which are based on the one-term approximations already discussed:

P] Il ( O ) 1—8 i (4-17)
ane wall; =1—- B -
_Qmax wall i :"'LI
: ) Q N Ji(hg)
Cylinder: = L—3 G (4-18)
QITLEJ-‘. cyl ; :""'-J

( 0 ) sin A; — A, cos )\,
Sphere:
sph

= 1— 30 4 (4-19)
Qm:ax i }'k?



EXAMPLE 4-3 Boiling Eggs

An ordinary egg can be approximated as a b-cm-diameter sphere (Fig. 4-19).
The egg is initially at a uniform temperature of 5°C and is dropped into boil-
ing water at 95°C. Taking the convection heat transfer coefficient to be

h = 1200 W/m? - °C, determine how long it will take for the center of the egg
to reach 70°C.

SOLUTION

Properties The water content of epgs is about 74 percent, and thus the ther-
mal conductivity and diffusivity of eggs can be approximated by those of water

at the average temperature of (b + 70)/2 = 37.5°C; k= 0.627 W/m - °C and = 1200 W/mZ2-°C
a = klpC, = 0.151 X 10°°* m?s T,=95°C
The Biot number for this problem is FIGURE 4-19
_ Ing (1200 W/m? - °C)(0.025 m) _
BLI=g 0.627 W/m - °C -
which is much greater than 0.1, and thus the lumped system analysis is not
applicable. The coefficients A; and A, for a sphere corresponding to this Bi are,
from Table 4-1,
Ai=3.0753, A, =1.9958
Substituting these and other values into Eqg. 4-15 and solving for T gives
Tr'l - Tn: 2 70 — 05 .
— —MT = . — (3075337 e :
T —T. Aje T —— 5 _ 95 1.9958¢ — 7= 0.209
which is greater than 0.2, and thus the one-term solution is applicable with an
error of less than 2 percent. Then the cooking time is determined from the de-
finition of the Fourier number to be
s '-“JJ' _ (0.209)(0.025 m) — 865 s =~ 14.4 mip | nerefore, it will take about 15 min for the center of the egg to be heated from

¢ 0151 X 10~% m2/s 5°C to ?OT



EXAMPLE 44 Heating of Large Brass Plates in an Oven

In a production facility, large brass plates of 4 cm thickness that are initially at
a uniform temperature of 20°C are heated by passing them through an oven
that is maintained at 500°C (Fig. 4-20). The plates remain in the oven for a
period of 7 min. Taking the combined convection and radiation heat transfer
coefficient to be h = 120 W/m? . °C, determine the surface temperature of the

plates when they come out of the oven.

SOLUTION

Properties The properties of brass at room temperature are k= 110 W/m - °C,
p = 8530 kg/m3, G, = 380 J/kg - °C, and « = 33.9 x 10-° mé/s
More accurate results are obtained by using properties at average temperature.

Noting that the half-thickness of the plate is L = 0.02 m, from Fig. 4-13 we have

1k _ 100 W/m - °C _ g )
Bi AL (120 W/m? - °C)(0.02 m) ' T,
6 » =046 Also,
Cat (339 X 107" m¥s)(7T X 605) 46 =T,
CTIET (0.02 m)? st
é =Hi= 45.8 -
— T=T; TFT—TF T.—F
= (J.899 b w4
x L _ I T, Therefore, T—T. T —T.T—T,
B o

and T=T,+ 0455(T; — T,) = 500 + 0.455(20 — 500) = 252°C

Therefore, the surface temperature of the plates will be 282°C when they leave
the oven.

T, =500°C
=120 W/m?2=C
L
=y 2L=4cm
Brass
plate
TI.=EI}“‘E
-~
FIGURE 4-20

= = 0.46 X 0.99 = 0.455



EXAMPLE 4-5 Cooling of a Long Stainless Steel Cylindrical Shaft
A long 20-cm-diameter cylindrical shaft made of stainless steel 304 comes out
of an oven at a uniform temperature of 600°C (Fig. 4-21). The shaft is then al-
lowed to cool slowly in an environment chamber at 200°C with an average heat
transfer coefficient of f# = 80 WimZ2 . °C. Determine the temperature at the cen-
ter of the shaft 45 min after the start of the cooling process. Also, determine
the heat transfer per unit length of the shaft during this time period.

SOLUTION

Properties The properties of stainless steel 304 at room femperature
are k¥ = 149 Wim - °C, p = 7900 kg/m?® C, = 477 Jkg - °C, and
o= 3.95 X 107® m?s More accurate results can be obtained by
using properties at average temperature.

be determined from the Heisler charts. Noting that the radius of the shaft is
r,= 0.1 m, from Fig. 4-14 we have

1 _k__ 149Wm-°C _ . o )
Bi fhr, (30W/m?- °Cy0.1 m) T.— T
ot (3.95 X 1076 m¥s)(45 X 60s) (T, T, U0 and

T,=T,+ 04T, — T,) = 200 + 0.4(600 — 200) = 360°C

Therefore, the center temperature of the shaft will drop from 600°C to 360°C

in 45 min.
To determine the actual heat transfer, we first need to calculate the maximum

heat that can be fransferred from the cylinder, which is the sensible energy of
the cylinder relative to its environment. Taking L = 1 m,

T =200"C
h =80 W/im*-°C

Stainless steel
shaft

T, = 600°C

FIGURE 4-21



m = pV =prur} L= (7900 kg/m*)m(0.1 m}*(1 m) = 248.2 kg
Omax = MELT — T,-} = (248.2 kg)(0.477 kJ/kg - °C)(600 — 200)°C

= 47,354 kl
The dimensionless heat transfer ratio is determined from Fig. 4-14¢ for a long cylinder to be
.1 1
B =9mi 188 2
ey Q = 0.62 Therefore, @ = 0.620,,, = 0.62 X (47.354 kI) = 29.360 k]
= Bi’r = (0.537)%1.07) = 0.309 | =™

4

which is the total heat transfer from the shaft during the first 45 min of the cooling.

ALTERNATIVE SOLUTION Woe could also solve this problem using the one-term
solution relation instead of the transient charts. First we find the Biot number

hr, (80 W/m® - °C)0.1 m)

i — — — "_1
B 14.9 W/m - °C o
The coefficients \; and A; for a cylinder corresponding to this Bi are deter-
mined from Table 4-1 to be A, = 0.970, A= 1,132
) ; ; T =T
Substituting these values into Eq. 4-14 gives  §, = T—T, = A M7= 1,122 0ITOHLITN = ( 41

and thus T =T, + 041(T, — T,) = 200 + 0.41(600 — 200) = 364°C

The value of J;(x,) for x; = 0.970 is determined from Table 4-2 to be 0.430.
Then the fractional heat transfer is determined from Eq. 4-18 o be

Tk
Qi= 2. A _ 5 s 0419430 _ 636

M 0.970
and thus 0 = 0.6360,,.. = 0.636 X (47.354 kI) = 30,120 k]




4-3 TRANSIENT HEAT CONDUCTION IN SEMI-INFINITE SOLIDS

A semi-infinite solid is an idealized body that has a single plane surface and
extends to infinity in all directions, as shown in Fig. 4-22. This idealized body
is used to indicate that the temperature change in the part of the body in which
we are interested (the region close to the surface) 1s due to the thermal condi-
tions on a single surface. The earth, for example, can be considered to be a &
semi-infinite medium in determining the variation of temperature near its sur-
face. Also, a thick wall can be modeled as a semi-infinite medium if all we are
interested in 1s the variation of temperature in the region near one of the sur-
faces, and the other surface is too far to have any impact on the region of in-
terest during the time of observation.

Consider a semi-infinite solid that is at a uniform temperature T,. At time
t = (), the surface of the solid at x = () 1s exposed to convection by a fluid at a
constant temperature T, with a heat transfer coefficient . This problem can
be formulated as a partial differential equation, which can be solved analyti-
cally for the transient temperature distribution T(x, f). The solution obtained is
presented in Fig. 4-23 graphically for the nondimensionalized temperature
defined as

Plane
surface

FIGURE 4-22

) =Ty fix,t)— T;
L — T4 B Ia—1

I

I —8x. 1) =1 (4-21)

against the dimensionless variable x/(2v/af) for various values of the param-
eter hv/atfk.
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Note that the values on the vertical axis correspond to x = 0, and thus rep-
resent the surface temperature. The curve h/at/k = = corresponds to /1 — oo,
which corresponds to the case of specified temperature T, at the surface at
x = 0. That is, the case in which the surface of the semi-infinite body is sud-
denly brought to temperature T at t = 0 and kept at T,_ at all times can be han-
dled by setting /i to infinity. The specified surface temperature case is closely



approximated in practice when condensation or boiling takes place on the
surface. For a finite heat transfer coefficient /i, the surface temperature
approaches the fluid temperature T, as the time f approaches infinity.

The exact solution of the transient one-dimensional heat conduction prob-
lem in a semi-infinite medium that is initially at a uniform temperature of T,
and is suddenly subjected to convection at time = 0 has been obtained, and
is expressed as

e f —1 X ) fx h?cﬂj : ( X Ifa“\,—ﬁ)
= _Elﬁ:(zvﬁf exp | 7 7 2 erfc IV _ (4-22)

where the quantity erfc (£ ) is the complementary error function, defined as

erfc(E)=1— ifﬁ e du (4-23)
v o

Despite its simple appearance, the integral that appears in the above relation
cannot be performed analytically. Therefore, it is evaluated numerically for
different values of &, and the results are listed in Table 4-3. For the special
case of i — oo, the surface temperature T, becomes equal to the fluid temper-
ature T, and Eq. 422 reduces to

T{-Iﬁﬂ_Tf_ ['f X
T.— T g E(E“\;’&I)

(4-24)



TABLE 4-3

The conplemer lary eror Tunclion

£ erfc (&) £ erfc () £ erfc (&) E erfe (E) £ efc (&) £ erfc {£)
0.00 1.00000 | 0.38 0.6B91C | 076 0.282h | 1.14 0.10&8 1.b2 0.0315h9 1.0 0.00721
0.02 0.9774 040 0.571e | .76 0.2700 | 1.16 0.10090 | 1.4 0.02941 1.92 0.00662
0.04 0.9549 0.42 05525 | 0.8C 0.2579 | 1.18 0.098516 | 1.b6 0.02737 | 1.94 0.00608
0.0 00324 044 08338 | ORBZ 02462 | 120 0OO083R0 | 1A8 0D.0ZR4K 1.96 0.00kRY
0.08 0.9099 0.4c 05153 | 0.84 0.2349 | 1.22 008447 | 1.60 0.02365 1.8 0.00511
.10 0.88/b 048 0449/3 | DB 02239 | 1.24  0.0/7950 | 162 00219 | 2.00 0.00468
17 0.86A7 0RO 0479 | DRE N2133 | 126 007476 | ThR4 0072038 | 2.0 0.007208
0.14 0.8431 0.2 04621 | 3.00 0.2031 | 1.28 Q07027 | 1.66 0.01890 | 220 0.00186
0.16 0.8210 0.54 04451 | 0,92 0.1932 | 1.30 0.06599 | 158 0.01751 | 230 0.00114
0.18 0.799! 0.56 04284 | 0.94 0.1837 | 1.32 0.06194 | 1.70 0.01612 | 240 0.00069
0.20 07773 0.68 04121 | 3.9  D.1716 | 1.34 0.068230 | 1.72 001600 | 260 0.00011
0.22 0.75b7 0.60 03961 | 0.98 0.16B68 | 1.36 0.05444 | 1.74 0.01387 | 260 0.00024
0.24 0.7343 0.62 0.380€ | 1.0C 0.1573 | 1.38 0.05098 | 1.76 0.01281 | 2.70 0.00013
026 07131 064 0365R4 | 1.0Z 01462 | 140 004772 | 178 001183 | 2820 0.00008
0.28 0.692] 0.66 0300 | 1.04 0.1413 | 142 004462 | 1.0 03.01091 2.90 0.00004
.30 Ub/14 068 03362 | LD 01339 | 1.44 004170 | 1.8 001006 | 3.00 0.00002
.37 .ARNDG 070 03227 | 108 D267 | 146 003895 | TRL 000626 | 320 0.00001
0.24 0.6306 0.72 0.308€ | 1.1C D.1198 | 1.48 (003635 | 1.B6 0.00853 | 240 0.00000
.36 0.6107 074 02953 | 1.1z 0.1132 | 1.60 0Q.03390 | 1.88 0.00784 | 3.0 0.00000




EXAMPLE 4-6 Minimum Burial Depth of Water Pipes to Avoid Freezing

In areas where the air temperature remains below 0°C for prolonged periods of
time, the freezing of water in underground pipes is a major concern. Fortu-
nately, the soil remains relatively warm during those periods, and it takes weeks
for the subfreezing temperatures to reach the water mains in the ground. Thus,
the soil effectively serves as an insulation to protect the water from subfreezing
temperatures in winter.

The ground at a particular location is covered with snow pack at —10°C for a
continuous period of three months, and the average soil properties at that loca-
tion are k = 0.4 W/m - °C and & = 0.15 X 107% m?%s (Fig. 4-24). Assuming an
initial uniform temperature of 15°C for the ground, determine the minimum
burial depth to prevent the water pipes from freezing.

SOLUTION
Analysis The temperature of the soil surrounding the pipes will be 0°C after

three months in the case of minimum burial depth. Therefore, from Fig. 4-23,
we have

.fr"-.fcﬂ:

i o= {since i — =)
X
= = 0.36
_TEl A _n—(—m}_ﬂﬁ § ISt
L= - 15—(—10)

We note that

t = (90 days)(24 h/day)(3600 s/h) = 7.78 X 1053

and thus

X =2EvVat =2 X 036V(0.15 X 105 m¥s)(7.78 x 108s) = 0.77T m

Therefore, the water pipes must be buried to a depth of at least 77 cm to avoid
freezing under the specified harsh winter conditions.

[ T=-10C

HEFSO N T .

Soil I

| Wat&r pj_.p-e . ,.._'

T e

FIGURE 4-24



ALTERNATIVE SOLUTION The solution of this problem could also be deter-
mined from Eq. 4-24.:

T(x.1)— T, 3
——— =vgric s
T,— T, gv’—m) ~10— 15

0— 15 ( X )
= erfc = (.60
2% at

The argument that corresponds to this value of the complementary error func-
tion is determined from Table 4-3 to be £ = 0.3/. Therefore,

x=2Evat =2 X037/(0.15 X 1075 m¥s)(7.78 X 10°s) = .80 m

Again, the slight difference is due to the reading error of the chart.



4—-4 TRANSIENT HEAT CONDUCTION IN MULTIDIMENSIONAL SYSTEMS

The transient temperature charts presented earlier can be used to determine the & B
temperature distribution and heat transfer in one-dimensional heat conduction l= | I
problems associated with a large plane wall, a long cylinder, a sphere, and a . .
semi-infinite medium. Using a superposition approach called the product 4=y T(r.p) wesp Heat
solution, these charts can also be used to construct solutions for the fwo- ‘ i ransfer
dimensional transient heat conduction problems encountered in geometries
such as a short cylinder, a long rectangular bar, or a semi-infinite cylinder or 1 &
plate, and even three-dimensional problems associated with geometries such <

as a rectangular prism or a semi-infinite rectangular bar, provided that all sur-
faces of the solid are subjected to convection to the same fluid at temperature
T, with the same heat transfer coefficient /1, and the body involves no heat

(¢} Long cvlinder

generation (Fig. 4-25). The solution in such multidimensional geometries can T. /_I_\

be expressed as the product of the solutions for the one-dimensional geome- h B -

tries whose intersection is the multidimensional geometry. Heat
AEN T x 1) b faTaFar

() Short cylinder (two-dimensional)

FIGURE 4-25



Consider a short cylinder of height a and radius r, initially at a uniform tem-
perature T, There is no heat generation in the cylinder. At time t = 0, the
cylinder is subjected to convection from all surfaces to a medium at temper-
ature T, with a heat transfer coefficient fi. The temperature within the cylin-
der will change with x as well as r and time ¢ since heat transfer will occur
from the top and bottom of the cylinder as well as its side surfaces. That is,
T = T(r, x, 1) and thus this is a two-dimensional transient heat conduction
problem. When the properties are assumed to be constant, it can be shown that
the solution of this two-dimensional problem can be expressed as

%0 = T, Men-T\ (Tnd=T
( -0 )“h“.“ = ( T.— T, )"'”‘“( T.— 7, [ infnite (4-25)

cylinder wall cylinder

That is, the solution for the two-dimensional short cylinder of height a and
radius r, 15 equal to the product of the nondimensionalized solutions for the
one-dimensional plane wall of thickness a and the long cylinder of radius r,,
which are the two geometries whose intersection is the short cylinder, as
shown in Fig. 4-26. We generalize this as follows: the solution for a multi-
dimensional geometry is the product of the solutions of the one-dimensional
geometries whose infersection is the multidimensional body.

For convenience, the one-dimensional solutions are denoted by

T(x, ) — T
Ouat(X, 1} = | =5 — 7 Jotane
: = Fall
6.i(F. 1) (T(r. ) — Tm)
eyl 8} = | 7= 7 |infinie
TJ " cylinder
T, f) — T,
:-trm mI{ t} = ? semi-infinite (4-26)

sobd

T
Plane wall
f S e
E- =
_T_ i =
o
| NSt
-
= — Long
cylinder
FIGURE 4-26

A short eylinder ol radius -, amd
height a is the fmierseciion of a long
evlindzr of radins #, and a plane wall
of thickness a.



The proper forms of the product solutions for some other geometries are given
in Table 4-4. It is important to note that the x-coordinate is measured from the
surface in a semi-infinite solid, and from the midplane in a plane wall. The ra-
dial distance r is always measured from the centerline.

TABLE 4-4

Multidimensional solutions expressed as products of one-dimensional solutions for bodies that are initially at a
uniform temperature 7; and exposed to convection from all surfaces to a medium at 7.

0 . | "‘L
! r. F r
I .
— : x = }_- ‘—-——l—-—’
Bir,1) = Etm{r, n Qxrh= Er_‘y! CRED. ) Bix,r, 1) = Eiq] (.08,
Infinite cylinder Semi-infinite cylinder Short cylinder
< 2 L
z ‘“ﬁﬁ
-1_ T
(% y.2,10) =
Blx.0) = E'ssv.-.J'ﬂ.i-Lnl'IE'TJ f) 6 ':-I::F-n o Bgc“-ﬁ_m[(-t ) Es:rn.i.-inf {}', f) 95|:|'J'1i-inf{'r" I!]'":]'ﬂrrm'-inf{J"." ) E'Sm:rrl.i-inl'{z" B
Semi-infinite medium Quarter-infinite medium Corner region of a large medium
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transient heat transfer for a two-dimensional geometry formed by the inter-
section of two one-dimensional geometries 1 and 2 is

(0]~ 22), * 2, [ o)
Qm:‘ﬂ: m[EII..ED Qm-ﬂx i Qmﬂ E Qm.lt 1

Transient heat transfer for a three-dimensional body formed by the inter-
section of three one-dimensional bodies 1, 2, and 3 is given by

(Qi)mm.,m x (Qix), & (Qi)z [I(QQH
i (QQ) i (o) | I(QL:H




EXAMPLE 4-7 Cooling of a Short Brass Cylinder

A short brass cylinder of diameter D= 10 cm and height H = 12 cm is initially
at a uniform temperature 7, = 120°C. The cylinder is now placed in atmo-
spheric air at 25°C, where heat transfer takes place by convection, with a heat
transfer coefficient of h = 60 W/m? - °C. Calculate the temperature at (a) the
center of the cylinder and (b) the center of the top surface of the cylinder

. : To=25°C
15 min after the start of the cooling. b 60 Wimoo
SOLUTION
Properties The properties of brass at room temperature are k = 110 W/m - °C R DT ————
and o = 33.9 x 10-5 m¥s ,
Analysis {a) This short cylinder can physically be formed by the intersection of -l L
a long cylinder of radius r, = 5 cm and a plane wall of thickness 2L = 12 cm,
as shown in Fig. 4-28. The dimensionless temperature at the center of the 1:"I’—F—"rﬂ——
plane wall is determined from Figure 4-13a to be )
__ar_ (39X 107 m)000s) _ ]_F'_‘_f?i? |
T (0.06 m)? i T, 1)—T. .
B0, 1) = ————= 0.8
1_k_  10Wm-"C _ .. f FIGURE 4-28
Bi AL (g0 W/m?. °C)006m)

Similarly, at the center of the cylinder, we have
_at {3.39 = 107 mas)(900 s) 122

| ply——r
i

T Pl PR G i
O B s I refore,
|l _k _  110Wm-°C T I-T.

—_— — = =i
Bi fir, (60 Wim? - *C)(0.05 m)

T(0.0.¢) =T,
T )

shon = Byan(0. 1) X B(0, 1) =08 x05=04 and
cylinder

T0,0,)=T,+04T;—T,) =25+ 0.4(120 — 25) = 63°C

This is the temperature at the center of the short cylinder, which is also the cen-
ter of both the long cylinder and the plate.



(B) The center of the top surface of the cylinder is still at the center of the long
cylinder {r = 0}, but at the outer surface of the plane wall (x = L}. Therefore,
we first nead to find the surface temperature of the wall. Motingthatx = L =
0.06 m,

i 0.06 m —
0.06 m Pt
k. 110 Wim - °C I,—T.

1
Bi & (60 Wim? . “C)(0.06 m) B

[=]=

= 0.98
30.6

Then

Fil, YT, PP =TT =T

Badl. t) = {T__JT = ( {T _jT )(;_T ) = (.98 % 0.8 = 0.784
i x e o i o0
Therefore,
T(L.0,1)-T.
: ® cyvlinder

and

T(L, 0.1} = T,, + 0.392(T; — T.) = 25 + 0.392(120 — 25) = 62.2°C

which is the temperature at the center of the top surface of the cylinder.



EXAMPLE 4-8 Heat Transfer from a Short Cylinder

Determine the total heat transier from the short brass cylinder (p = 8530
kg/m?, £, = 0.380 kl/kg - °C) discussed in Example 4-7.

SOLUTION

m = pV = pwri L = (8530 ke/m™ (0,05 m)A(0.06 m) = 4.02 kg
O = MC,(T; — T,.) = (4.02 ke)(0.380 kifkg - °C)(120 — 25)°C = 145.1 KJ

Then we determine the dimensionless heat transfer ratios for both geometries,
For the plane wall, it is determined from Fig. 4-13¢ to be

Bi = —— = = = (L0327
I/Bi ~ 30.6 ( 0 ) 5
1 loet ; 7 Jplane
* k‘;‘ = Bi%r = (0.0327/48.48) = 0.0091 | \Zmax /2
Similarly, for the cylinder, we have
o TR N B
2 1/Bi 367 ( 0 ) — (.47
q _—
”kgﬂ — Bi%r = (0.0272)%12.2) = 0.0000 | \Cmax/ 00

Then the heat transfer ratio for the short cylinder is,

[Qi)w o (@il " (_@i)z {] ) (Qix)l}

=023 + 047(1 — 0.23) = 0.592

Therefore, the total heat transfer from the cylinder during the first 15 min of
cooling is

0 = 0.5920,,.. = 0.592 % (145.1 kI} = 85.9 k]



EXAMPLE4-9  Cooling of a Long Cylinder by Water

A semi-infinite aluminum cylinder of diameter D = 20 cm is initially at a uni-
form temperature T, = 200°C. The cylinder is now placed in water at 15°C
where heat transfer takes place by convection, with a heat transier coefficient
of i = 120 W/m? - °C. Determine the temperature at the center of the cylinder
15 cm from the end surface 5 min after the start of the cooling.

SOLUTION

Properties The properties of aluminum at room temperature are k = 237
Wim:*Canda =971 x 10-2m?fs

First we consider the infinitely long cylinder and evaluate the Biot number:
fr, (120 Wim? - “C)0.1 m) i
g 237 Wim « °C -

The coefficients &, and A; for a cylinder corresponding to this Bi are deter-

mined from Table 4-1 fo be &, = 0.3126 and 4; = 1.0124. The Fourier num-
bar in this case is

oot (971 2 107 mAfs)(5 X 60 5)
2 (0.1 m)?

Bi =

(LO5

i}
d

= 2.91 > 0.2

HI:I = Hc_\'EI:-T"-. rj =.-d1|€_}‘_:7 — iIDIME—Kﬂ_'i]lEF[E.Ql] =BT
The solution for the seami-infinite solid can be determined from

] i hx h Iﬂ:f x i \-’f.l'.!]
| — B, £) = erfe [—— | —exp [ =+ =5 || erfe |——= +
seabindl 2 1) = € C(E‘v’uf) cxp(k k= )[Erc(ﬂ’v’m k ]

First we determine the various quantities in parenthases:

e 0.15m .
IVar  2V(9.71 % 1077 m¥s)(5 ¥ 60 s)

Vet _ (120 Wim? - "C)V(9.71 ¥ 107 m*/s)3300 )
K 237 Wim - °C

£ 0.44

= (L0866

T, =15C

o= 120 Wim?=C
r=15cm
FIGURE 4-29



fe (120 Wim? - "CH0.15 m)

k BT Wim - °C_ D010
2 AT
T (ﬁ “;“f) — (0.086)2 = 0.0074

Substituting and evaluating the complementary error functions from Table 4-3,

B X 1) = 1 — erfe (0.44) + exp (0.0759 + 0.0074) erfc (0.44 + 0.086)
= 1 — 0.5338 + exp (0.0833) ¥ 0.457
= 0.963

Mow we apply the product solution to get

Tix,t)y—T,
To 2 somi-infinite E'a:mi-ini{-xa- '[}Hr_l.'llzﬂ-. 1) =0963 x 0.762 =0.734
¢ . cylinder

and

Tix,0,1)=T,+ 0734T;, — T,) = 15 + 0.734200 — 15) = 151°C

which is tha temperature at the center of the cylinder 15 cm from the exposad
bottom surface.



PROBLEMS — 4
Lumped syslem applications aod crileria

1.1

4.2

4.4

A solid copper sphere of diameter 10cm, initially at 8 uniform
temperaturs of 250°C, is suddenly immersed in a well-stirred
Nuid 1hal is wamtaned @1 a imfonn ewperaluees of 50°C. The
hicat transfer coctficient betweon the sphere and the fAuid is
200W/m’ PC. (a) Check whether lumped system analysiz is
applicabla. (k] If it is applicable, determine the temperatiwe of
the copper block at Himes r=1min, =2min, and =5min aticr
iunpersion in (he cold Duid. [for copper k=336Whan'C,
p=85 54]::g!m3, and C=383J1%kg.°C.|

A solid iron sphere of diameter Sem, intially at a uniform
temperaturs of 700°C. is exposed to a cocl air stream at 100°C.
The heal coellicienl belween (he air sireain andd (he surface of
the 1ron sphere 15 SOW/m"°C. (a) Check whether lumped system
analysis is applicable. (b) T applicable, determine the time
required for the temperature of the sphere to reach 300°C. [For
iron,  k=60W/m.PC,  p=TRO0ka/m”,  and  C=4601'kg.°C.]
Answear: {b) 6.841min

A lage almnimum plale of thickness 3o s inilially al a
vniform temperature of 50°C. Suddeanly it ig subjected (both
surfaces) to a cool air siream at 20°C. The heat transier
coelfivien! between [he wir streain and (he surface is SOW/ul °C.
(a) Check whether lumped system analysis 1s applicable. (b} L
appliceble, derermine the time required for the temperamre of
the plate to reach 40°C. [for sluminum, k=204Wm."C,
p=2707kz/rr’, and C=8961'kg °C.]

A Zem diameter alummum sphers ts mitially ab a temperature of

175°C. Tr is snddenly immersed in a well-srirred fuid at a

tamperaturs of 25°C Tha temparature of the =phere is lowared to

10G°C in 42%. Calculate the heat transfer coefficient. Check
whethar lumped system analysis 13 applicable. |For aluminum,
E—204W/m ', p—2707ke/n, and C—8961/ke "C.]

4.5

4.7

4.8

4.9

A 6cm diameter potato at a uniform temperature of 80°C is
taken out of the oven and suddenly exposed to ambient air af
20°C. If the heat coefficient between the air and the potato is
25W/m’.°C, determine the time required for the potato to reach
50°C.[for  potato. k=7TW/m.°C, p=1300k gf’mj. and
C=43001/kg’C.]  Apswer: 26min

Consider an alnmimmn cnbe of side 3cm thar s inrially at a
nn:form temperature of 50°C. Suddenly all ifs surface: are
exposed (0 cool air at 20°C. The bheal Uansler coelficiend
betwaen the air and the surfaces is S0W/m'.°C. Agsuming that
lumped system analysis i= apolicable, develop an sxpression fou
the temperature I(f) of the cube as a funcuon of time and plot
the (eweralure ol the solid awainsd e, [for slonino,
k=201W/m.’C, p=3?ﬂ?l~:g11115‘ and C=8061/kg."C.]

Consider a copper block of sides 2om x Zom x 3om, intially at a
maiform temperature of 300°C, that is immersed in a fluid at
25"C. The leat trancfer coefficient between the fluid and the
surfaces is BOW/m"."C. Calculate the time required for the cube
to cool fo S0°C. Check the velidity of the lumped systam
analysis. [For copper. k=386W/m."C, p=3954kg.fm3. and
3837k °C.] Answer 6.42min

4 0lem diameter long vwooden stick at 15°C is suddenly
exposad to 500°C gases with a swface heat transfer coefficiznt
of 15Wm °C berween the stick and the gases, 1 tha ‘gnition
remperature of the wood is 315"C, find the exposure tinie before
possible iznition. [ For wood, k—0.14W/m."C, p—ﬁﬂﬂkgfmﬁ, and
C=250T%kg. "C.] Answer: 2.415

A shart. cylindrical aluminum ber of 1cm diamater and Zem
hieight is initially at a nn:form temperature of 150°C. Suddenly
the =irlaces are subjecled o convechive cooling wilh 4 heal
transfer coefficient of 15W/m>.°C into an ambient fluid at 30°C.
Caleulate the remperature of the cylinder Lmin after the start of
e covling. [For aluiimmn, k=204W/m."C. p=2?ﬁ7kgﬂu§. aud
C—8061/kg."C.] Answer: 120.7°C



4.10 A thermocouple junction. approximated as a sphere of 4.15
constantan. is to be used to measure the femperature of & gas.
The heat transfer coefficient bemween the gas &nd the
thermocouplz  is 400W/m °C.  Calenlate  the  maximum
allowable diameter of the junciion if the thermocouple should
measurs 05 percent of the apolied temperature difference in 55.[ 4.16
Tor constantan. k=1.28W/m.°C, p=145 Sl:gx"_u3, and
C—4101/kz."C.]

4.11 A stzel ball |k=35W/m.”C. p=?8{][}kgf1113‘ and C=4601/kg.°C.|
5.0cm in diameter and initally at a uniform temperature of 4-17
450°C 15 suddenly placad in a contrclled envircnment in which
the temperature is maintained at 1C0°C. The convection heat
transfer coefficient is 10W/m”°C. Calculate the time required
for the ball attain a temperatuze of 150°C. Answer:
1.62hr

4.18

4,12 A copper sphere having a diameter 3.0cm is initially at a
uniform temperature of 50°C. It is suddenly exposed to an air
stream of 1€°C with h=15W/m’.°C. How long does it take the
sphiere lemperalure Lo drop 25°C?

Transient Temperature Heat Flow In A Semil-Infinite Sollds

4.13 A thick stainless-steel slab [a=1.5x10 5111%5, and k=60W/m.C]
is initially at a uniform temperature of 220°C and maintained at
that temperature. By fieating the slab as a semi-infinite solid,
determine the temperature at a depth lem from the surface and

the heat flux at the swface 2min after the surface temperature

lowered. 4.21
4,14 A fireclay brick slab [-125:1}{1{&'%11!3, and k=1W/m."C] 10cm

thick is initizlly at a vniform temperamure of 350°C. suddenly

one of its surfaces is subjectad to convection with a heat transfer

coefficient of 100W/m”°C into an ambient at 40°C. Caleulate

the temperatine at a depth [om from the surface 2min after start
of conling.

4.19

20

A thick aluminum slab [0=8.4x10”m"/S. and k=200W/m.°C] is
initially at a uniform temperature of 20°C suddenly one of its
surfaces is raised to 100°C. Calculate the time required for the
temperature at a depth 5cm from the surface to reach to 80°C.
Answer: 140,78
A thick stainless steel slab [l::.:l,ﬁxlﬂ'smlfs. and k=60W/m."C]
is initially at a uniform temperature of 100°C. One of its
surfaces is suddenly lowered to 30°C. Determine the time
required for the temperature at a depth 2m from the surface to
reach 50°C. _
A thick bronze [0=.86x10"m/S, and k=26W/m.°C] is initially
at a uniform temperature of 250°C. Suddenly one of its surfaces
is exposed to convection cooling by a fluid at 25°C Assuming
that the heat transfer coefficient for convection between the
fluid and the surface is 150W/m".°C, determine the temperature
at a location Scm from the surface 10min after the exposure.
A thick wood wall [¢=.82x10"m%S, and k=0.15W/m.°C] is
mitially at a uniform temperature of 20°C. Suddenly one of its
surfaces is raised to 80°C. Calculate the temperature at a
distance 2cm from the surface 10min after the exposure.
A thick concrete wall having a uniform temperature of 54°C is
suddenly subjected to an air stream at 10°C. The heat transfer
coefficient is 2.6W/m’°C. Calculate the temperature 1 the
concrete slab at depth 7em after 30min.
A very large slab of copper 1s mitially at a temperature of
300°C. The surface temperature is suddenly lowered to 35°C.
What is the temperature at a depth of 7.5cm 4min after the
surface temperature 1s changed.
On a summer day a concrete driveway may reach a temperature
of 50°C. Suppose that a stream of water is directed on the
driveway so that the surface temperature is suddenly lowered to
10°C. How long will it take to cool the concrete to 25°C at a
depth of 5cm from the surface?



4.18

A semi-infinite slab of copper is exposad to a constant heat flux Large Plane Wall )
at the surface of 0.32MW/m’. Assumne that the slab is in a 4.29 A steel plate [a=1.2x10"m>S. k=45W/m.°C. Cp=465J/ke.°C.

vacumn, so that there is no convection at the surtace. What 1s
the smface temperafure after 3min 1f the infial temperahire of
thea clab is 30°C? What is the temperature at a distanca of 15 cm
fromt the surface aller Sin?

A large slab of copper is initially at & uniform temperature of
100°C. lts surface temperatire 1s suddenly lowered to 40°C.
Calculate the heat-transfer rate through a plans and the
lemperdiure al lhe depth of 7.2¢u [rom the surlace 58 aller lhe
surface temperature 1s lowersd.

A large slab of alumimm at a uniform temperature of 25°C is
suddenlv exposed to a constant surface heat flux of 25kWim’,
What is the temperature at a depth of 2.5¢m after 2min. How
long would take for the temperature to reach 150°C at the depth
of 3em

A picee of ceramic material [k=0 8W/m.°C, p=27[li]kg£m3?
C—0.8k1/k2°C] is quite thick and initially at a uniform
lewperatme of 25°C. The swlace of (he mwaterial is suddenly
exposed to a constant heat flux of 1000W/m> Calculate the
temperatmre af a cepth of 1.5e¢m Smm after.

A larze slab of concrste is suddenly exposed to a coustant
radiant heat flux of 1000W/m” on one of its surfaces. The slab is
initially in temperature at 25°C. calculate the temperaturs at a
depth of 10cm in the slab after a rime of 10h.

A very thick plate of stainless stcal (13% Cr. 8%Ni) at a
uniform temperature of 300°C has its surface temperatue
suddenly lowered to 100°C. Calculate the time required for the
temperaturs at a depth of 3cm to attain a value of 200°C.

A thick wood slab [a=1.28x10"m*8. and k=0.17W/m."C] that
is nitially at & uniform temperatire of 25°C is exposed to hot
gases at 530°C for a perind of émin. the heat transfer coefficient
between the gases and the wood slab is 30W/m™."C. If the
ignition temperature of the wood is 420°C, determine if the
wood will 1znit=.

4.30

4.31

4.32

4.34

p=783 Bkgfuf] thickness 6cm. initially at a uniform temperature
of 250°C, is suddenly immersed in an oil bath at 30°C. The
convective heat transfer coefficient between the fluid and the
surface is S00W/m”°C. How long it take for the center-plane to
cool to 140°C?

A copper plate of thickness 4cm is initially at a uniform
temperature of 25°C. Suddenly both of its surfaces are raised to
50°C. Calculate the centerline temperature 10min after the
surface temperature is raised.

A fireclay brick slab [[¢=5.4x10"m’S. k=1W/m.°C] of
thickness 6cm is initially at a uniform temperature of 400°C.
Suddenly one of its surfaces is subjected to convection with a
heat transfer of 100W/m’.°C.into an ambient at 50°C. The other
surface is insulated. Calculate the centerline temperature 1h
after the start of cooling

A large slab of aluminum has a thickness of 10cm and is
initially uniform in temperature at 400°C. Suddenly it is
exposed fo a convection environment at 100°C with
h=1500W/m” °C. How long it take the centerline temperature to
drop to 200°C.

A horizontal copper plate 12¢m thick 1s mitially uniform in
temperature at 250°C. The bottom surface of the plate is
insulated. The top surface i1s suddenly exposed to a flmd at
50°C. After 6min the surface temperature has dropped to 150°C.
Calculate the convection heat-transfer coefficient which causes
this drop.

A plate of stainless steel (18%Cr.85N1) has a thickness of 3.0cm
and is initially uniform in temperature at 500°C. The plate is
suddenly exposed to a convection environment on both sides at
50°C with h=150W/m”.°C. Calculate the times for the centerline
and face temperature to reach 100°C.



4.35 In a mear processing plant. 2em thick steaks [k—0.5W/m."C. and 4.40

Long
4.36

4.37

4.38

4.39

e=1x10"m’/S] that arz initially at 30°C are to be cooled by
passing them through a rafrigeration room at -10°C. The heat
transfer coefficient on both sides of the steaks is L0W/m".°C. If
botlt surfaces of (e steaks ame o be cooled (o 3°C. delennine
how long the steaks should be kept in the retrigeration room.
Cylinder

A lony  steel shall  of rading  15cmfu—1.6x10"w’”8,
k—60WhL"C, Cp—465T/kg.*C, p—7833kwiu’] is taken out of an
oven at a uniform temperature of 300°C and immersed in a
well-stirred larze of 25°C coolant. The heat transfer coefficient
hetwezen the shatt surface and the ceolant is 200W/moC.
Caleulate the time required for the shaft center to reach 100°C
and (he arpount ol heat wansfer fomm e shall @t os e,

A long stecl bar of diemcter 6om 15 mitially at a uniform
temperature of 200°C. Suddenly the swiface of the bar is
exposed fo an amhient at 20°C with a heat rranster coetticient of
400W/m>°C. Calculate the center temperature 3min after the
slarl of he coohng, Caleulzie the eneruy removed [rom the bar
per meter length duringz this tume gperiod.

A hot dog can be regarded as a colid having a shape in the form
of a long solid eylinder, Consider 4 hot dog Ju—1.6x10"0%8S,
amd k=0.5W/m. C| of diameter 2.4cm, initially at a unitorm
temperature of 3°C. droppad into boiling water at 100°C. The
heat transfer coefficiznt between the water and the swface is
200W/m?.°C. 1f the meat is considered cooked when its center
lemperaturz resches 80°C, how long will 1t take for the
centerline temperature to reach §0'C?

A long pure copper rod of diameter Scm 15 initially at a uniform
temperature of 120°C. It is suddenly dropped into a coolant pool
at 25°C. The heat transter coefficient hetwesn the coolant and
the rod 15 400W/in™.°C. Determine the center temperature of the
rod 1208 after exposure to the coolant. Calculate the energy
removed from the rod per metfer length during this nme perod.

4.41

4.42

A long 35cm diameter cylindrical shaft made of stainless steel
304 [k=15W/m.°C.p=7900kg/m’, Cp=4771/ke.°C. and
0=3.95x10°m*/S] comes out of an oven at a uniform
temperature of 500°C. The shaft is then allowed to cool slowly
in a chamber at 200°C with an average convection heat transfer
coefficient of h=75W/m>.°C. Determine the temperature at the
center of the shaft 30min after the start of the cooling process.
Also determine the heat transfer per unit length of the shaft
during this time period.

A long cylindrical wood log [k=0.16W/m.°C and «=1.28x10"
?1113H8}i5 12cm in diameter and is inifially at a uniform
temperature of 10°C. It is exposed to hot gases at 540°C in a
fireplace with a heat transfer coefficient of 12W/m>.°C on the
surface, If the ignition temperature of the wood is 420°C,
determine how long it will be before the log ignites.

A long cupper bar of radius 8cim, is initially came out of oven at
a uniform temperature of 600°C. suddenly exposed to
environment at a temperature of 50°C. with a heat transfer
coefficient between the bar and the fluid is 500W/m’°C.
calculate the time for the center temperature and swurface
temperature that reach 325°C.

Sphere

4.43

4.44

A solid aluminum sphere of diameter 10cm is initially at 250°C.
Suddenly it is immersed in a well-stired bath at 125°C. The
heat transfer coefficient between the fluid and the sphere
surface is 600W/m”.°C. How long will it take for the center of
the sphere to cool to 150°C?

A solid aluminum sphere of diameter 8cm is initially at 120°C.
Suddenly its surface is lowered to 20°C. Determine the center
temperature of the sphere 5S lowering the surface temperature.



44

th

4.46

447

4.48

An 9cm diameter potato, mitially at a uniform temperature of
25°C, is suddenly dropped into boiling water at 100°C. The heat
transfer coefficient between the water and the surface of the
potato is 5000W/m”.°C. Assume the thermal properties of potato
to be [@=1.5x10"m?*S and k=7W/m.°C]. Determine the time
required for the center temperature of the potato to reach 75°C.
A copper ball [a=1.1x10"m%S and k=380W/m.°C] Scm in
diameter is initially at a uniform temperature of 150°C. It is
suddenly dropped into a coolant pool at 20°C. The heat transfer
coefficient between the coolant and the ball is 400W/m’."C.
Determine the center temperature of the ball 90S after exposure
to the coolant. Calculate the energy removed from the ball
during the time period.

Consider an 8cm diameter orange that is initially at 15°C. A
cold front moves in one might, and the ambient temperature
suddenly drops to -6°C. with a heat transfer coefficient of
15W/m”.°C. Using the properties of water for the orange and
assuming the ambient condition to remain constant for 4h
before the cold front moves out, determine if any part of the
orange will freeze that night.

A steel sphere 10cm in diameter is suddenly immersed in a tank
of oil at 15°C. The initial temperature of the sphere is 225°C:
h=4500W/m”.°C. How long will it take the center of the sphere
to cool to 1207

Transient Heat Conduction In Multidimensional System

4.49

A long steel bar 5 by 10 cm is initially maintained at a uniform
temperature of 300°C. It is suddenly subjected to a change such
that the environment temperature is lowered to 25°C. Assuming
a heat transfer coefficient to be 25W/m>.°C, estimate the time
required for the center temperature to reach 100°C.

A steel bar 2.5cm square and 7.5¢m long is imtially at a
temperature of 250°C. It is immersed in a tank of oil maintained
at 30°C. The heat transfer coefficient is 600W/m".°C. Calculate
the temperature in the center of the bar after 1008.

4.51

4.53

4.54

4.55

4.30

A copper short bar 2.5cm-3cm-3cm is mitially at a uniform
temperaturs of 300°C . Tt is immersed in the tank of water
wiintained af 20°C. (he lieal (ransler coefMicient is 430Wan2.°C.
Calenlate the temperature at the center of each face 2min after
the starting of coolng.

A cube of aluminum 12cm on each side 1s inifially at a
temperature of 100°C and is immersed in a fluid at 100°C. the
heat transfer coefficient is 800W/m’.°C. Calculate the
temperaturs at the center of one face alter 1.5min.

A short conarele cyhnder 200 diameter and 30cm long s
mitially at 25°C. It is allowed to cool i1 an atmospheric
cnvironment in which the temperature 1s 0°C. Calculate the time
requited tor the center tzmperaturs to reach 7°C if the heat
transfer coefficiant is 20W/m™.°C.

A semi-infinite aluminnm cylinder of a diamater of 10cm is
initially at uniform temperature of 500°C. it is exposed suddenly
to air strcam of a tcmperaturc 50°C. The heat transfer
coefficient between the cylinder and the fluid is 2000W/m? °C.
Determine the temperature at the center line and deep Scm from
the finite end Zmin after stait cooling.

A 4.0-cm square bar of alnmimm is initially at 450°C and is
suddenly exposed to a convection environment at 100°C with
I—1200W/ur”.>C. find (e (ewperature of its fuce center 1008
after the start of cooling.

An cube of almmmunn 12cm each side 13 mnbally al a
temperature of 100°C. It is suddenly immersed in a tank of oil
maintained at 80°C. The convection coefficient is
1200W/m>.°C. Calculate the temperature at the center of one
tace and the mid point at one edge and one corner after a tune of
one 1un. also calculate the amount of heat transter.




