TECHHICAL EE S g
m— MAJAF
@ e TRCHNEALOOLEE

The Najaf
Experience ...

< Frealleat trazhine

ANE resiarca

" Dhatst anding stuch:

Facil

7 Majafcitr location

« Eizgh yaality

residences — raraniesd
AERRAMeRAT AR i yoar
Igppvears

Dme=oine nyestmert

aregram

< Colegeeduzation

sinep 1998

s i o il ], ] i i

paaali 3 el

HEAT TRANSFER
b ) jad) el

srll 36 Sbe e



HEAT TRANSFER 5 ) ad) Juass

CHAPTER FIVE NUMERICAL METHODS | N HEAT CONDUCTION

5-1 FINITE DIFFERENCE FORMULATION OF DIFFERENTIAL
EQUATIONS

5-2 ONE-DIMENSIONAL STEADY HEAT CONDUCTION

5-3 TWO-DIMENSIONAL STEADY HEAT CONDUCTION

5-4 TRANSIENT HEAT CONDUCTION



So far we have mostly considered relatively simple heat conduction problems involving simple geometries
with simple boundary conditions because only such simple problems can be solved analytically. But many
problems encountered in practice involve complicated geometries with complex boundary conditions or
variable properties and cannot be solved analytically. In such cases, sufficiently accurate approximate
solutions can be obtained by computers using a numerical method.

Analytical solution methods such as those presented in Chapter 2 are based on solving the governing
differential equation together with the boundary conditions. They result in solution functions for the
temperature at every point in the medium. Numerical methods, on the other hand, are based on replacing
the differential equation by a set of n algebraic equations for the unknown temperatures at n selected points
in the medium, and the simultaneous solution of these equations results in the temperature values at those
discrete points.

There are several ways of obtaining the numerical formulation of a heat conduction problem, such as the
finite difference method, the finite element method, the boundary element method, and the energy balance
(or control volume) method. Each method has its own advantages and disadvantages, and each is used in
practice. In this chapter we will use primarily the energy balance approach since it is based on the familiar
energy balances on control volumes instead of heavy mathematical formulations, and thus it gives a better
physical feel for the problem. Besides, it results in the same set of algebraic equations as the finite difference
method. In this chapter, the numerical formulation and solution of heat conduction problems are
demonstrated for both steady and transient cases in various geometries.



5-1 FINITE DIFFERENCE FORMULATION OF DIFFERENTIAL EQUATIONS

The numerical methods for solving differential equations are based on
replacing the differential equations by algebraic equations. In the case of the
popular finite difference method, this is done by replacing the derivatives by
differences.

Derivatives are the building blocks of differential equations, and thus we
first give a brief review of derivatives. Consider a function f that depends on
x, as shown in Figure 5.1 . The first derivative of fix) at a point is equivalent
to the slope of a line tangent to the curve at that point and is defined as

afix) = lim ﬂ—f lim S ﬂu:}_ — %)

51

dx Ar—0 Ax  Ar—0 Ax

which is the ratio of the increment Af of the function to the increment Ax of the
independent variable as Ax — 0. If we don’t take the indicated limit, we will
have the following approximate relation for the derivative:

dfxy  fix + Ax) — fx)
dx — Ax 5.2

Now consider steady one-dimensional heat transfer in a plane wall of thick-
ness L with heat generation. The wall is subdivided into M sections of equal
thickness Ax = L/M in the x-direction, separated by planes passing through
M+1points®, 1,2,....,m— L,mm+ 1,..., M called nodes or nodal
points, as shown in Figure 5-7. The x-coordinate of any point m is simply
x,, = mAx, and the temperature at that point is simply T(x,,) = T,

The heat conduction equation involves the second derivatives of tempera-
ture with respect to the space variables, such as d*7T/dx?, and the finite differ-

ence formulation is based on replacing the second derivatives by appropriate

fix)

flx+ Ax)

JFix)

Tangent line

FIGURE 5-1
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differences. But we need to start the process with first derivatives. Using
Eq. 5.1, the first derivative of temperature d7/dx at the midpoints m — % and
m + 1 of the sections surrounding the node 1 can be expressed as

dT
dx

& Tr.'.‘ s T.-rl—l aridl £| = T.-r_- +1 = .Tr.lu'
i —ql - Ax ; de ]l Ax

=

Noting that the second derivative is simply the derivative of the first deriva-
tive, the second derivative of temperature at node m can be expressed as

% I—j—T I Tm+I_Tm_T:H_Im—E
dir| ity Himy Ay Ax
o Ax Ax

NP VL o
Ax?

which is the finite difference representation of the second derivative at a gen-
eral internal node m. Note that the second derivative of temperature at a node
m is expressed in terms of the temperatures at node m and its two neighboring
nodes. Then the differential equation

d*T &

ko
which is the governing equation for steady one-dimensional heat transfer in a
plane wall with heat generation and constant thermal conductivity, can be ex-
pressed in the finite difference form as (Fig. 5-8)

0

Tm—l e 2Tm + Tm+| S;m
Ax? Tk

where g, 1s the rate of heat generation per unit volume at node m.
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5-2 ONE-DIMENSIONAL STEADY HEAT CONDUCTION

To demonstrate the approach, again consider steady one-dimensional heat
transfer in a plane wall of thickness L with heat generation g(x) and constant
conductivity & The wall is now subdivided into M equal regions of thickness
Ax = L/M in the x-direction, and the divisions between the regions are
selected as the nodes. Therefore, we have M + 1 nodes labeled 0,1, 2, ...,
m—1,m,m+1,..., M, as shown in Figure 5-10. The x-coordinate of any
node m 1s simply x,, = mAx, and the temperature at that pointis T(x,) = T,,.
Elements are formed by drawing vertical lines through the midpoints between
the nodes. Note that all interior elements represented by interior nodes are
full-size elements (they have a thickness of Ax), whereas the two elements at
the boundaries are half-sized.

To obtain a general difference equation for the interior nodes, consider the
element represented by node m and the two neighboring nodes m — 1 and
m + 1. Assuming the heat conduction to be infe the element on all surfaces,
an energy balance on the element can be expressed as

Rate of heat Rate of heat Rate of heat Rate of change
conduction | [ conduction generation | _ [ of the energy
at the left at the right inside the content of or
surface surface element the element
: 1 : ﬂEﬂemcm
anrnd‘ left + and. right * Gi.‘ll'.‘l'l'l'l.‘ﬂ! = At =0

since the energy content of a medium (or any part of it) does not change under
steady conditions and thus AE,,. .., = 0. The rate of heat generation within
the element can be expressed as

GE]H‘HL‘I‘JI. = gmvelermnt = gmAﬁx
where g,, is the rate of heat generation per unit volume in W/m? evaluated at

node m and treated as a constant for the entire element, and A 1s heat transfer
area, which 1s simply the inner (or outer) surface area of the wall.
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A 1 m— 1
Ax

which simplifies to

Tm—] | 2?::: 0 T;n+]

T

or

g, AAx =0

=
-2 8

—Volume
element
of node 2

T

T,-2T,+ T+ g,AAx* k=0

m=1,23 ... .M—1

+ g, AAx =10
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Boundary Conditions

1. Specified Heat Flux Boundary Condition

T ==
GoA + kA — o~ L4 5 (AAX2) = 0
Special case: Insulated Boundary (g, = 0)
I —T, :
kA + G(AAX/2) = 0

Ax

2. Convection Boundary Condition

RA(T,. — Ty) + KA I;x

—T” + 8o(AAX/2) = 0

3. Radiation Boundary Condition

Ax

iig
ED‘A{TJ,” I TLh + kA :

Ty

+ §(AAX2) = 0

4. Combined Convection and Radiation Boundary Condition

RA(T. — To) + e0A(The — TH + kA

n

Condition

GoA + hA(T, — T) + ecA(TE, —

I, — Ty

Ax

+ go(AAX/2) = 0

. Combined Convection, Radiation, and Heat Flux Boundary

Ax

T

TH + kA

6. Interface Boundary Condition

kA + kpA

Ax

Tm—l = Tm Tm+l —
Ax

TTH‘J

_[_ §4,M{Am-‘lr2j + g:;,;;_.{ﬂﬂd’f?.} — U

© 4 B(AAX2) = 0
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EXAMPLE 5-1 Steady Heat Conduction in a Large Uranium Plate
Consider a large uranium plate of thickness L = 4 ¢m and thermal conductivity

k = 28 W/m - °C in which heat is generated uniformly at a constant rate of ranim
g = 5 x 105 W/m?. One side of the plate is maintained at 0°C by iced water plate
while the other side is subjected to convection to an environment at 7, = 30°C 0eC : h
with a heat transfer coefficient of h = 45 W/m< - °C, as shown in Figure 5-18. \\ ‘{5:23 ‘Wfr:- = : T,
Considering a total of three equally spaced nodes in the medium, two at the g=5x10"Wm
boundaries and one at the middle, estimate the exposed surface temperature of I
the plate under steady conditions using the finite difference approach. 0 0 : 7 =
SOLUTION
Analysis The number of nodes is specified to be M = 3, and they are chosen FIGURE 5-18
to be at the two surfaces of the plate and the midpoint, as shown in the figure.
Then the nodal spacing Ax becomes
L 0.04 m
;EU:=M_1= T ] =0.02 m
: A To—2T+T, 8 ) — 2T+ Ty 8 5 A2
Node 1 is an interior node m = 1: -9 ! 2,8 I e T T | (1)
AL + 2 0 — S + I 0 — ET] Tg I
Node 2 is a boundary node subjected to convection, BA(T,, — T5) + kA T'; 2y g:(AAX/2) =0
? Ax 2
Canceling the heat transfer area Aand rearranging give 7, — (] " %)Tf, " _% T — % (2)
Equations (1) and (2) form & system of two equations in two unknowns 7 and 2T, — T, =7143 (in °C)

Is. Substituting the given guantities and simplifying gives T, — 1.032T, = —36.68 (in °C)

This is a system of two algebraic equations in two unknowns and can be solved
easily by the elimination method. Solving the first equation for 7, and substi- T, = 136.1 C
tuting into the second equation result in an equation in T; whose solution is

I = 103.8°%C,



5-3 TWO-DIMENSIONAL STEADY HEAT CONDUCTION

Now consider a volume element of size Ax X Ay X 1 centered about a gen-
eral interior node (m, #) in a region in which heat is generated at a rate of g and
the thermal conductivity & is constant, as shown in Figure 5-24. Again
assuming the direction of heat conduction to be toward the node under
consideration at all surfaces, the energy balance on the volume element can be

expressed as :
\ L,
Rate of heat conduction Rate of heat Rate of change of L e
at the left, top, right, | + | generation inside | = | the energy content | Or e lement l
and bottom surfaces the element of the element Ay :‘__ T ‘:
AE rrrri—l,ﬂ!gm"E m,n | m+1,n
l . . H . elemeant n L I T
chnd, left ;3 and. top T annd.right + annd. bmtl:nm+ Gn:leml:-nl u At =0 d N
: ; ) Ay gl ]
for the steady case. Again assuming the temperatures between the adja- I
cent nodes to vary linearly and noting that the heat transfer area 15 ,_| —* mn =il
A, = Ay X 1 = Ay in the x-direction and A, = Ax X 1 = Ax in the y-direction, e
the energy balance relation above becomes 1‘[ m— | m m+
f{ﬁ.}-‘ Tm—E,:;; Tm,n+kﬂme.n+é‘_ T:m.n +k&mi+t.i; Tm..r: ¥
;’ . FIGURE 5-24
a1 dm, :
+ kAx — e i + g AxAy =10
Dividing each term by Ax X Ay and simplifying gives
Tm—],n = ZTm.n + Tm+|.n Tm.u—l == ZTm.n -t Tm,n+l i gm,rr ~0
Ax? Ay? k
Then Ax = Ay = [, and the relation above simplifies to
] 5 2
5 ' 8 nu-i:h{:'!r -
K + T 4+ T il ek i = 0 or T + Ttl:up ok Trjghl + Tpottom — Hoas + R =il
m—1n m+1,n moa+ i ma—17T a1, n k E



EXAMPLE 5-3

Consider steady heat transfer in an L-shaped solid body whose cross section is
given in Figure b-26. Heat transfer in the direction normal to the plane of the
paper is negligible, and thus heat transfer in the body is two-dimensional. The
thermal conductivity of the body is kK = 15 W/m - °C, and heat is generated in
the body at a rate of g = 2 x 10% W/m3. The left surface of the body is insu-
lated, and the bottom surface is maintained at a uniform temperature of 90°C.
The entire top surface is subjected to convection to ambient air at T, = 25°C
with a convection coefficient of h = 80 W/m? - ®C, and the right surface is sub-
jected to heat flux at a uniform rate of gz = 5000 W/mZ. The nodal network of
the problem consists of 15 equally spaced nodes with Ax = Ay = 1.2 cm, as
shown in the figure. Five of the nodes are at the bottom surface, and thus their
temperatures are known. Obtain the finite difference equations at the remain-
ing nine nodes and determine the nodal temperatures by solving them.

SOLUTION

(a8) Node 1
ﬂx _&FTE_T]_L MT_ﬂ_—T[ .&Iﬂ'}"_
I}+J12(Tm T,}+L2 e kg Ay +g;2 2—[}
Taking Ax = Ay = [, it simplifies to
hi _hl §il?
(E+L)T1+T2+T4 A,Tm_ﬁ
(b) Node 2.
ﬂ'!}? Tj_ T1 T T".I ﬂ.'ﬁ.? Tl TE .ﬁ_}' _
hAX(T, — 1)) + k—=- > AT + kAx—— Ay kT = + gzxiucT =)

Taking Ax = Ay =/, it simplifies to

2., &P

IcT’“ k

Ty (4+%)TE+T3+2T5

Steady Two-Dimensional Heat Conduction in L-Bars

Convection
y h, T,
Il 2
t — 1
Ay
|
}
Fayoa] OGNS S S N SR S S Sy S
| | | | 1 ST
| .1[}| *11, ‘12, _131 .14*15 -
90°C '
‘—ﬂ_r—'ﬂ—m—hd—ﬂx—bd—ﬂx—hd—&:r—h

FIGURE 5-26
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() Node 3.

Ax Ay AxT— T4 AyT, - T, Ax Ay
FJ(E—I-E){TM T3}+Ic2 x5 - 3 T Ax +g32 7

Taking Ax = Ay = [, it simplifies to

Tq—(er%)TﬁTE:——Tm——,

(d) Node 4. M 1

g2 .
T5+T]+T5+TID_4T4+T:0 (5) \‘ 4 JI 5

or, noting that 7,, = 90° C,

2k
k

(e) Node 5

‘.IE
BT T CR, ATt 0

or, noting that T;; = 90°C,

gl*

(f) Node 6. o

A AYTo— T, it
;1(E+§)(Tm—m+k—y R yiteE

2 2 Ax
To— T T 3AxAY
IS O e s R T )
£ 2 N5y < 2hl ol 3gd°
Taking Ax = Ay = [ and noting that Ty, = 90°C, it simplifiesto 13 + 215 — (5 + T) L+ =—180— =T, ——

+ kAy




(g) Node 7.

AyT; — T Ty —T;
hAx(T, — T7) + k 9 A% + kAx %

Ayde—15 , =+ AY
0y ity

=0

Taking Ax = Ay = [and noting that 7,3 = 90°C, it simplifies to

2hl 2hi &l
Tﬁ—(4+T)T?+Tg=—1sa—T’Tm—’“’T

(h) Node 8. This node is identical to Mode 7

2hl 2hi g5l
Tq—(4+T)Tg+Tg.= _lgﬂ_?Tm_T
(i) Node Q.
Ax Ay  AxTis— T, AT - T Ax 8y _

=0

h (T, = Ty) + dp + &

2 AT A
Taking Ax = Ay = /and noting that T15 = 90°C, it simplifies to

T\ TR
TE_<2.R')TQ_ g{] k kT{-} Ek

This completes the development of finite difference formulation for this prob-
lem. Substituting the given quantities, the system of nine equations for the
determination of nine unknown nodal temperatures becomes

T,=112.1°C  T,=1108°C  T;= 106.6°C
T,=1094°C  Ts=108.1°C T, =103.2°C
T.= 973°%€ = 963%C T,= 976%€

h. T-:r: .’f_. Tm

o 1
F*%"‘"‘* I_E L
13

w5

DAl + T+ T ——112
Ty — 4.128T, + T, + 2T = —22.4
T, — 21287, + T, = —12.8

T, — 4T, + 2T; = —109.2

T T — AT+ T =— 1002

Ty + 275 — 61287, + Ty = —212.0

T, — 4.128T, + T, = —202.4

T, — 4.128T + Tp = —202.4

T — 2.064T, = —105.2

—

G



EXAMPLE 5-4 Heat Loss through Chimneys

Hot combustion gases of a furnace are flowing through a square chimney made
of concrete (kK = 1.4 W/m - °C). The flow section of the chimney is 20 cm X
20 cm, and the thickness of the wall is 20 cm. The average temperature of the
hot gases in the chimney is T, = 300°C, and the average convection heat frans-
fer coefficient inside the chimney is i, = 70 W/m? - °C. The chimney is losing
heat from its outer surface to the ambient air at [, = 20°C by convection with
a heat transfer coefficient of i, = 21 W/m? - °C and to the sky by radiation. The
emissivity of the outer surface of the wall is £ = 0.9, and the effective sky tem-
perature is estimated to be 260 K. Using the finite difference method with
Ax = Ay = 10 cm and taking full advantage of symmetry, determine the
temperatures at the nodal points of a cross section and the rate of heat loss for
a 1-m-long section of the chimney.

SOLUTION
(a) Node 1
Ax Ay, - T, AxTs — T, _
D+h,—2{T; T;}+JL2 A +£:2 A +0=0
Taking Ax = Ay = [, it simplifies to
.Fll'lf .Fi,r'.lr
= 2+T T[+TQ+T3: _?TI
(b) Node 2
Ay — T Ax 1 Ti—=T1
.ECTT‘I‘}T’IE-T(T,-—TQ} 0+ kAx Ay —i)
Taking Ax = Ay = [, it simplifies to
ri— (345 1, v 0r, = -2y
L ( . k) 2 o k i

Symmetry lines
{Eguivalent io insulation)

hl TJ
| 2
3 4 5
6 » |7 8 ¥

b T

sky

Representative
section of chimney



(c) Nodes 3, 4, and b. (Interior nodes, Fig. 5-34)

I

Noded: Tz + To+ Ts + T; — 4T, = 0 o 7 ) _M'erri
Node 5: T, + Ty + Ty + Ty — 4T5 =0 R
| |
I I
(d) Node 6. (On the outer boundary, subjected to convection and radiation) Ef:'\___ 2 s 5___&
I
T,—T,  AyT,—T e |
D + kE—E & 4 k_} 7 & image :
2 Ay 2 Ax ~ 16 i 8 |

Ax _ "l.fI'\lL o 7

+.f, T (o — Tz g(}‘ (T } =0 Mirror irror

Taking Ax = Ay =/, it simplifies to

Il il
L e — (2 + T) To=—— E‘ﬂ —TH

(d) Node 6. (On the outer boundary, subjected to convection and radiation)

AxT: — T kﬂ}‘T?_Té

D+AT Ay TN
+hﬂ.%@ T6)+EG%I{TM—T;]=G

Taking Ax = Ay = /, it simplifies to

bl _hl
fig T;—( )Tﬁ 3‘”

I k sk].r IS‘F ]

(%)



{g) Node 7. (On the outer boundary, subjected to convection and radiation,

.|"."1_} Tﬁ T'Ir T T';.' ﬂ}- Tg T]r
T + kAx Ay k— A
+ h AxX(T, — T;) + ecBx(T;, — T7) =0
Taking Ax = Ay = /, it simplifies to
2h, 1 k.1
2T, + Tﬁ—( +%)T? e gm‘r(i'liy ~ T3

(f) Node 8. Same as Node 7, except shift the node numbers up by 1 (replace

4 byb 6by 7, 7by& and 8 by 9 in the last relation)

2,1 20,1 gm;

B AL (4

(g) Node 9. (On the outer boundary, subjected tcr convection and radiation,

kﬂPTS
2 Ax

Taking Ax = Ay = [ it simplifies to

h,l hr,!
Te— 1+ r Ty= e 1=

T A
0 S (T Ty + ea o 5 (Tdy — TH =0

E:n::r! {T . T;",‘}

T, = (T, + Ty + 28635)/7

T, = (T; + 2T, + 2865)/8

= (2T

T,= (T, + T, + T. + T4

Ts = (2T, + 2T)i4

T, = (T, + Ts + 4562 — 0.3645 % 107 TH/3.5

Ty =T+ Te + Ty + 9124 — 0729 X 10°°TH/T T,=5457K =272.6°C T,=
4112K =
T,=3281K= 549°C T,=

T,=QTs+ T, + T, + 9124 — 0729 X 10°THT T, =
Ty = (Ty + 456.2 — 0.3645 X 10~ TH/2.5

138.0°C T5=

SR S .
/ Insulation
1 4
y= =

‘J.._ 1 | 1
6 1, S 9
hT
=ky

Temperature, °C
23 40 55 el 55 44 M

a9 152 859
Al w - v ) - ] o A0
138 256 273 256 138
559 " o . 855
Gle 152« 273e +273 @152 wgl
55« . & 4 #35
|38 256 273 256 138
Al & ® ' & ™ & &40

89 138 152 138 &Y

23 40 55 60 55 40 23

3202 K =1256.1°C T;=4252K = 152.1°C
3621 K= B89.0°C T,=3329K = 597°C
3131 K= 399°C T,=2065K= 234°C



5-4 TRANSIENT HEAT CONDUCTION

Transient Heat Conduction in a Plane Wall

L' T
E Q T £::-:I-:ruml - pLI{.'h!I'I'IL‘I'lt —

Tr  (5.39)
All sides '-I:”

where T} and T *! are the temperatures of node m at times t, = {Afand f, _ , =

(i + 1)At, respectively, and T/*' — T! represents the temperature change
of the node during the time interval Af between the time steps i and i + 1

Consider transient one-dimensional heat conduction in a plane wall of thick-
ness L with heat generation g(x, 1) that may vary with time and position and
constant conductivity £ with a mesh size of Ax = /M and nodes 0, 1, 2, . . .,
M in the x-direction, as shown in Figure 5-40. Noting that the volume ele-
ment of a general interior node m involves heat conduction from two sides and
the volume of the element 1s V., = AAx, the transient finite difference for-
mulation for an interior node can be expressed on the basis of Eq. 5-39 as
T T T,.,—T Ti+! — Ti

4 tm=1" % 3 m+1 m - ; m
RA—"= " + kA5 ——= + g AAx = pAAXC "

Canceling the surface area A and multiplying by Ax/k, it simplifies to
_ L GnAX AR
T I F Tani =k

m=—1 m "
where a = k/pC is the thermal diffusivity of the wall material. We now define
a dimensionless mesh Fourier number as

_ _ OAr
T A

T i — a0 e

= T:j

]

(T,:-.H

g AR Tt — T
kT

==
“4.|E
e

the stability criterion for all nodes in this caseis 1 — 2r =0 or

| IIIII

=]

Ti’

mi—1

Plane wall

‘é.l'ill

T:'
Fis

—Volume
element
of node m

+1

=2
=
L

FIGURE 5-40



EXAMPLE 5-5 Transient Heat Conduction in a Large Uranium Plate

Consider a large uranium plate of thickness L = 4 cm, thermal conductivity kK =
28 W/m - °C, and thermal diffusivity @ = 12.5 < 10-% m#/s that is initially at
a uniform temperature of 200°C. Heat is generated uniformly in the plate at a
constant rate of g = B x 10® W/m3. At time t = 0, one side of the plate is
brought into contact with iced water and is maintained at 0°C at all times, while
the other side is subjected to convection to an environment at 7., = 30°C with
a heat transfer coefficient of A = 45 W/mZ - °C, as shown in Figure 5-44. Con-
sidering a total of three equally spaced nodes in the medium, two at the bound-
aries and one at the middle, estimate the exposed surface temperature of the
plate 2.5 min after the start of cooling using (a) the explicit method and (b) the
implicit method.

SOLUTION
_ L 004m _
M—M_I— 31 = 0.02 m
{a) Node 1 is an interior node
- : . H Ax?
T = o(Ty + T + (1 — 2 Tj + v )
Node 2 is a boundary node subjected to cﬂnwectmn
T{—T§ Ax Ax T =T

WAT — T + KA —— + hA S = pA— C——

Dividing by kA/2Ax and using the definitions of thermal diffusivity « = &/pC and
the dimensionless mesh Fourier number = = aAH(AX)? gives
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since T = aA#(Ax)2. Substituting the given quantities, the maximum allowable
value of the time step is determined to be
(0.02 m)?

At =
2(12.5 X 107 m¥s)[1 + (45 W/m?® - °C)0.02 m)/28 W/m - °C]

= 13555

Therefore, any time step less than 15.5 s can be used to solve this problem. For
convenience, let us choose the time step to be Af = 15 s. Then the mesh
Fourier number becomes

aAr (125 X 107 m¥s)(15 )
(Ax)? (0.02 m)>

-
i

= (0.46875 (for Ar= 155)

Substituting this value of = and other given quantities, the explicit finite differ
ence equations (1} and (2) developed here reduce to

Ti+! = 0.0625T; + 0.46875Ti + 33.482
Ti+! = 0.9375Ti + 0.032366Ti + 34.386

The initial temperature of the medium at t = 0 and / = O is given to be 200°C
throughout, and thus T = T2 = 200°C. Then the nodal temperatures at T3
and T3 at f = Af = 15 s are determined from these equations to be

T} = 0.0625T¢ + 0.46875T9 + 33.482

— 0.0625 X 200 + 0.46875 x 200 + 33.482 = 139.7°C
T} = 0.9375TP + 0.032366T¢ + 34.386

— 0.9375 X 200 + 0.032366 % 200 + 34386 = 228.4°C

Node

T Time, Temperature, °C

Step, i 5 ] £
0 0 200.0  200.0
1 15 139.7 2284
2 30 1493 1728
3 45 123.8 1799
4 60 125.6 156.3
b 75 1146  157.1
6 30 1143 146.9
7 105 109.5 146.3
8 120 108.8 141.8
g 135 106.7 141.1
10 150 106.3 139.0
20 300 103.8 136.1
30 450 1037 1360
40 600 103.7 136.0



Two-Dimensional Transient Heat Conduction
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Taking a square mesh (Ax = Ay = [) and dividing each term by k gives after
simplifying,
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where again o = k/pC is the thermal diffusivity of the material and 1 = aAt/>
is the dimensionless mesh Fourier number. It can also be expressed in terms of

the temperatures at the neighboring nodes in the following easy-to-remember
form:
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EXAMPLE 5-7
Consider two-dimensional transient heat transfer in an L-shaped solid body that
is initially at a uniform temperature of 90°C and whose cross section is given
in Figure 5-51. The thermal conductivity and diffusivity of the body are k =
15 W/m - °C and & = 3.2 X% 10-% m?/s, respectively, and heat is generated in
the body at a rate of g = 2 x 10% W/m2. The left surface of the body is insu-
lated, and the bottom surface is maintained at a uniform temperature of 90°C
at all times. At time £ = 0, the entire top surface is subjected to convection to
ambient air at T_ = 25°C with a convection coefficient of h = 80 W/m? . °C,
and the right surface is subjected to heat flux at a uniform rate of gz = 5000
W/mZ. The nodal network of the problem consists of 15 equally spaced nodes
with Ax = Ay = 1.2 cm, as shown in the figure. Five of the nodes are at the bot-
tom surface, and thus their temperatures are known. Using the explicit method,
determine the temperature at the top corner (node 3) of the body after 1, 3, b,
10, and 60 min.
SOLUTION

c e b=

S E(EL e e D e e
méjﬁs Q element P ¥ element At
Fourier number T = aAH/?, where Ax = Ay = /.

(@) Node 1. (Boundary node subjected to convection and insulation,

Ax ; AyTi—Tf  AxTi—Tf
hT(Tm—T[}-I-LTT—l—LT Ay
AxAy  AxAy Hiat=i
=8 i S 0y Sy
Dividing by k/4 and simplifying,
_ - : : 'I'J'. :‘+]_TE
28 @, — T + AT - T + 2T — TP + 5 =———

which can be solved for T{™! to give T
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(b) Node 2. (Boundary node subjected to convection,

: AyTi —T§ _T_::'—Tz"
hAx(T, — T3) + kT e kAx Ay ;
Ay T| Tz &}’ Ay i+l T:;E
thy —p Ay =play O >~
Dividing by /2, simplifying, and solving for 7! gives 5
: . {E
Tﬁ"‘t — (1 41 — ZT%) T2 + 7 (TI + Tj, + QTS zjfl: T{.} + gET) Ub]' MNode 2

() Node 3. (Boundary node subjected to convection on two sides,
ﬂ._l: f.'u T—T§
h( 7 ){T — TH + 2 Ay
AyTi="1 . AxAy . Ay HE=T
> & taaPra m

Dividing by k/4, simplifying, and solving for 73+! gives

hi hi &l? (a) Node 3
T'J—(1—4¢—4~k)1"3 ET(T4+T5+2LT +E) S
|
(d) Mode 4. (On the insulated boundary, and can be treated as an interior node, Noting that 7., = 90°C =)
. . : [
B —(] = 47) T_{+T(Tf+2Tf+9U+g“T) 10

(e) Node 5. (Interior node, Noting that 7,; = 90°C, (b) Node 4

_ 12
Titl = (1 —4~}TJ+T(T4J~T‘{+T3+E}H}+'§L )
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(f) MNode &. (Boundary node subjected to convection on two sides,

Ax Ay N HE Ih= T T{—T{
h(2 ke 2)(?; TH+ k A + kAx a5 + kAy o
AxTi—Ti 3AxAy  3AxAy TEEL—iF,
2 S kS A
Dividing by 3k/4, simplifying, and solving for T/*! gives
: RN
Titl = (1 —ah*—ahri)?’gf (b) Node 6
. _ _ . el
+%[2T§ FATI 2T+ 4 X 90 + 42T, + 3%}
(g) Node 7. (Boundary node subjected to convection
i AyT{ — T T3 — T4
hAX(T,, — T4+ kT 0 + kAx Ay
AT T Ay Ay Iitl=T
TR’T Ax +g?ﬁIT_p&IT{:T
Dividing by &2, simplifying, and solving for T4+ gives
) . . : il 2
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(1) Node 8. This node is identical to node 7
i . . _ . il 2
Ti+! =(1 —%—QTLE)T§+T[T{+ T+ 2 % 90 +%TW+SET1
(/) Node 9. (Boundary node subjected to convection on two sides,
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Dividing by /4, simplifying, and solving for T4t gives

. A - el  hl_. |, &l°
Tg:+[=(1 —4'1'—ZT%)Td-l-’ZT(Tg‘-I-gﬂ-i-%-FETI-I-%

Ry ) P | W— R
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since = = wAf//2. Substituting the given quantities, the maximum allowable
value of the time step is determined to be

e (0.012 m)*
~4(3.2 X 1075 m¥s)[1 + (80 W/m? - °C)(0.012 m)/(15 W/m - °C)]
Therefore, any time step less than 10.6 s can be used to solve this problem. For
convenience, let us choose the time step to be Af = 10 s. Then the mesh
Fourier number becomes
adr (32X 1075 m?/5)(10 s)
[ (0.012 m)?

Substituting this value of = and other given quantities, the developed transient
finite difference equations simplify to

=10.6s

i

= 0.222 (for Ar = 105s)

fr p—
i

Ti+! = 0.0836T + 0.444(T; + Ti + 11.2)

Tit! = 0.0836T4 + 0.222(T{ + T{ + 2Ti + 22.4)
Tit! = 005527 + 0.444(T§ + T{ + 12.8)

Ti! = 0.112T + 0.222(Tf + 2T + 109.2)

Tit! = 0.112T] + 0.222(Tj + Ti + T; + 109.2)

Ti+! = 0.0931T} + 0.074(2Ti + 4T + 2T + 424)
Ti+! = 0.0836Ti + 0.222(T} + Ti + 202.4)

Ti+! = 0.0836T§ + 0.222(Ti + Tj + 202.4)

Ti+! = 0.0836T§ + 0.444(T§ + 105.2)

Using the specified initial condition as the solution at time t = O (for i = 0),
sweeping through these nine equations will give the solution at intervals of
10 s. The solution at the upper corner node (node 3) is determined to be
100.2, 1056.9, 106.5, 106.6, and 106.6°C at 1, 3, b, 10, and &0 min, re-
spectively.



5-16 Consider steady heat conduction in a plane wall whose
left surface (node () is maintained at 30°C while the right sur-
face (node 8) is subjected to a heat flux of 800 Wim?. Express
the finite difference formulation of the boundary nodes 0 and 8

for the case of no heat generation. Also obtain the finite dif-
ference formulation for the rate of heat transfer at the left
boundary.

30%C
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5-24 Consider a large uranium plate of thickness 5 cm and
thermal conductivity £ = 28 W/m - °C in which heat is gener-
ated uniformly at a constant rate of ¢ = 6 X 10° W/m?. One
side of the plate is insulated while the other side is subjected
to convection to an environment at 30°C with a heat transfer
coefficient of i = 60 W/m? . °C. Considering six equally
spaced nodes with a nodal spacing of 1 cm, (@) obtain the finite
difference formulation of this problem and (&) determine the
nodal temperatures under steady conditions by solving those
equations.

5-27 Consider a large plane wall of thickness L = 0.4 m,
thermal conductivity kK = 2.3 W/m - °C, and surface area
A = 20 m?. The left side of the wall is maintained at a constant
temperature of 80”C, while the right side loses heat by con-
vection to the surrounding air at T, = 15°C with a heat trans-
fer coefficient of i = 24 W/m? - °C. Assuming steady one-
dimensional heat transfer and taking the nodal spacing to be
10 cm, (@) obtain the finite difference formulation for all nodes,
(b) determine the nodal temperatures by solving those equa-
tions, and (¢} evaluate the rate of heat transfer through the wall.

3-25 Consider the base plate of a 800-W household iron hav-
ing a thickness of L = 0.6 cm, base area of A = 160 cm?, and
thermal conductivity of £ = 20 W/m - °C. The inner surface of
the base plate is subjected to uniform heat flux generated by
the resistance heaters inside. When steady operating conditions
are reached, the outer surface temperature of the plate is mea-
sured to be 85°C. Disregarding any heat loss through the upper
part of the iron and taking the nodal spacing to be 0.2 cm,
(a1) obtain the finite difference formulation for the nodes and
(b) determine the inner surface temperature of the plate by

solving those equations. Answer: (b) 100°C
Insalation
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!
T o]
E_.. Rase plate B3

£
E_" Ax=02cm
9 e

(g
Lad
=

i 1

160 cm?



5-29 Consider a large plane wall of thickness L = 0.3 m,
thermal conductivity &k = 2.5 W/m - °C, and surface area
A = 12 m%. The left side of the wall is subjected to a heat flux
of g = 700 W/m? while the temperature at that surface is mea-
sured to be T; = 60°C. Assuming steady one-dimensional heat
transfer and taking the nodal spacing to be 6 cm, (a) obtain the
finite difference formulation for the six nodes and (b) deter-
mine the temperature of the other surface of the wall by solv-
ing those equations.

5-35 One side of a 2-m-high and 3-m-wide vertical plate
at 130°C is to be cooled by attaching aluminum fins (k =
237 Wim - °C) of rectangular profile in an environment at
35°C. The fins are 2 cm long, 0.3 cm thick, and 0.4 cm apart.
The heat transfer coefficient between the fins and the sur-
rounding air for combined convection and radiation is esti-
mated to be 30 W/m? - °C. Assuming steady one-dimensional
heat transfer along the fin and taking the nodal spacing to be
0.5 cm, determine (a) the finite difference formulation of this
problem, () the nodal temperatures along the fin by solving
these equations, (¢) the rate of heat transfer from a single fin,

M. 130°C ;
> T =35°C

o

5-36 A hot surface at 100°C is to be cooled by attach-
ing 3-cm-long, 0.25-cm-diameter aluminum pin fins (k =
237 Wim - °C) with a center-to-center distance of 0.6 cm. The
temperature of the surrounding medium is 30°C, and the com-
bined heat transfer coefficient on the surfaces is 35 W/m? - °C.
Assuming steady one-dimensional heat transfer along the fin
and taking the nodal spacing to be 0.5 cm, determine (a) the fi-
nite difference formulation of this problem, () the nodal tem-
peratures along the fin by solving these equations, (c) the rate
of heat transfer from a single fin, and () the rate of heat trans-
fer from a 1-m X 1-m section of the plate.

53-37 Repeat Problem 5-36 using copper fins (k = 386
W/m - °C) instead of aluminum ones.
Answers: (b) 98.6°C, 97.5°C, 96.7°C, 96.0°C, 95.7°C, 95.5°C



546 Consider steady two-dimensional heat transfer in a long
solid body whose cross section is given in the figure. The tem-
peratures at the selected nodes and the thermal conditions at
the boundaries are as shown. The thermal conductivity of the
body is £ = 45 W/m - °C, and heat is generated in the body uni-
formly at a rate of ¢ = 6 X 10° W/m?. Using the finite differ-
ence method with a mesh size of Ax = Ay = 5.0 cm, determine
(@) the temperatures at nodes 1, 2, and 3 and (b) the rate of heat

loss from the bottom surface through a 1-m-long section of the
body.
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547 Consider steady two-dimensional heat transfer in a long
solid body whose cross section is given in the figure. The mea-
sured temperatures at selected points of the outer surfaces are
as shown. The thermal conductivity of the body is k = 45
W/m - “C, and there is no heat generation. Using the finite dif-
ference method with a mesh size of Ax = Ay = 2.0 cm, deter-
mine the temperatures at the indicated points in the medium.
Hint: Take advantage of symmetry.
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548 Consider steady two-dimensional heat transfer in a long
solid bar whose cross section is given in the figure. The mea-
sured temperatures at selected points of the outer surfaces are
as shown. The thermal conductivity of the body is £ = 20
W/m - °C, and there is no heat generation. Using the finite dif-
ference method with a mesh size of Ax = Ay = 1.0 cm, deter-
mine the temperatures at the indicated points in the medium.
Answars: [, = 185°C, 1o =Tz =T, = 190°C
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5-50 Consider steady two-dimensional heat transfer in a long
solid body whose cross section is given in the figure. The tem-
peratures at the selected nodes and the thermal conditions on
the boundaries are as shown. The thermal conductivity of the
body is k = 180 W/m - °C, and heat is generated in the body
uniformly at a rate of § = 107 W/m?. Using the finite difference
method with a mesh size of Ax = Ay = 10 cm, determine
(a) the temperatures at nodes 1, 2. 3, and 4 and (b) the rate
of heat loss from the top surface through a 1-m-long section of

the body.
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5-53 Consider steady two-dimensional heat transfer in an
L-shaped solid body whose cross section is given in the figure.
The thermal conductivity of the body is £ = 45 W/m - °C, and
heat is generated in the body at a rate of ¢ = 5 X 10% W/m>,
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3-62 Consider a 5-m-long constantan block (K = 23
Wim - “C) 30 cm high and 50 cm wide. The block is com-
pletely submerged in iced water at 0°C that is well stirred, and
the heat transfer coefficient is so high that the temperatures on
both sides of the block can be taken to be 0°C. The bottom sur-
face of the bar is covered with a low-conductivity material so
that heat transfer through the bottom surface is negligible. The
top surface of the block is heated uniformly by a 6-kW resis-
tance heater. Using the finite difference method with a mesh
size of Ax = Ay = 10 cm and taking advantage of symmetry,
(a) obtain the finite difference formulation of this problem for
steady two-dimensional heat transfer, (5) determine the un-
known nodal temperatures by solving those equations, and
{c) determine the rate of heat transfer from the block to the iced
water.
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5-74 Consider transient heat conduction in a plane wall with
variable heat generation and constant thermal conductivity.
The nodal network of the medium consists of nodes 0, 1, 2, 3,
and 4 with a uniform nodal spacing of Ax. The wall is initially
at a specified temperature. Using the energy balance approach,
obtain the explicit finite difference formulation of the boundary
nodes for the case of uniform heat flux ¢, at the left boundary
(node 0) and convection at the right boundary (node 4) with a
convection coefficient of & and an ambient temperature of T..
Do not simplify.

-Q_{xh r] II1 T-x-
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5-84 Consider a large uranium plate of thickness L = 8 cm,
thermal conductivity &k = 28 W/m - °C, and thermal diffusivity
a = 12.5 % 107° m%/s that is initially at a uniform temperature
of 100°C. Heat is generated uniformly in the plate at a constant
rate of ¢ = 10° W/m®. At time ¢ = 0, the left side of the plate is
insulated while the other side is subjected to convection with
an environment at T,, = 20°C with a heat transfer coefficient of
h =35 W/m* . °C. Using the explicit finite difference approach
with a uniform nodal spacing of Ax = 2 cm, determine (a) the
temperature distribution in the plate after 5 min and (b) how
long it will take for steady conditions to be reached in the plate.

5-87 Consider two-dimensional transient heat transfer in an
L-shaped solid bar that is initially at a uniform temperature
of 140°C and whose cross section is given in the figure, The
thermal conductivity and diffusivity of the body are £k = 15
W/m - °C and a = 3.2 X 107% m?/s, respectively, and heat is
generated in the body at a rate of g = 2 X 107 W/m’. The right
surface of the body is insulated, and the bottom surface is
maintained at a uniform temperature of 140°C at all times. At
time t = 0, the entire top surface is subjected to convection
with ambient air at T,, = 25°C with a heat transfer coefficient
of h = 80 W/m? - °C, and the left surface is subjected to
uniform heat flux at a rate of ¢; = 8000 W/m?. The nodal net-
work of the problem consists of 13 equally spaced nodes with
Ax = Ay = 1.5 ecm. Using the explicit method, determine the
temperature at the top corner (node 3) of the body after 2, 5,
and 30 min.
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5-89 Consider a long solid bar (A = 28 W/m - °C and « =
12 x 107% m%s) of square cross section that is initially at a uni-
form temperature of 20°C. The cross section of the bar is
20cm x 20 cm in size, and heat is generated in it uniformly at
a rate of ¢ = 8 % 10° W/m’. All four sides of the bar are sub-
jected to convection to the ambient air at T, = 30°C with
a heat transfer coefficient of h = 45 W/m? . °C. Using the
explicit finite difference method with a mesh size of Ax =
Ay = 10 cm, determine the centerline temperature of the bar
(@) after 10 min and (b) after steady conditions are established.
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