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CHAPTER FIVE The Second Law of Thermodynamics
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5.8 Entropy Change for an Irreversible Process
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The classical presentaton of the secord law of themmodynamics starts with the concept of
heat engines and reffigsrators, A heal engine sroduces work Fom o het tronsfer obtoined
from a thermal reservsoir, and s operstion is limited by the Kelvin—Planck statement, Re-
Miperaturs are functioaally the same as hezt pumps, and they drive energy by heat transfer
from a colder exviconment to & hetter envisamment, sucwthing Gt will ol Eapper by it-
gelf. The Clausius statoment says in cffcct that the refrigerator or heat purp docs need
work input 1o accomplish the fask. o approach the b:mit cf these eyclio devices, the icez
of reversiste processes is discussed and further explained by the opposits, namely, e
versible processes and impossible machices. A perpemal motior machine of the first kine
violetes the first law (encrgy equation), ard 2 porpetual machine of the second kind vio-
letes the =zcond law ob'thermodynarics.

The limitations for the performance of heat enginss {themral efficiency} and heat
i o eelrigersors (Coeflicient of performance or COP) are expressed by the core-
sponding Camot-cycle davice. Two prcpositions shisd the Caraol gyule fevias am an-
other way of expressing the sceond law of thennodynamiss instzad of the stateraents of
Kelvin-Flanck or Clansius. '['hese propasitions lead to the esteblishment of the -hermady-
namic absolute temperatire, done by Locd Kelvin, gnd the Camot-cyclz efficiency. We
show this temperaturs (o be the samne as the ideal-gas temperatire introdaced n Chapter 3.

You should have learned a numbszr of skills ané acouired abilities fom studying
this chapter that wil: adlow you to

» 1Tniderstand the concepts of heat ergires, heat pumps, and reftigerators.
v Have an idea about reversible processes.
« Know o numiber of imeversible processea and reecgnize ther.

+ Know what & Camot-cycle is.

+ Undestand (e dsfinition of thermal efficicncy of  heat engine.

+ Tnderstand the dzfinition of coefficient of performaice of a heat pump.

+ Kaow the difference between the absolule and relative tamperature.

+ Kanw the limits of thennal efiieiency as diciated by the thermal reservoirs and the
Camot-cycle device,

+ HMave an idea about the themmal efficiency of r2al heat engines,

v Lnow the limits of coetlicient of performance as dictated by the thermal reservolrs
and the Caract-cycle device.

+ Have an idea about the coefficient of perfermancs of real refrigerators.



The inequality of Clausius and the properly entropy (s} are modern staterents of the sec-
ond law. The final statement of the second law is the entropy balance equation that in-
cludes gencration of entropy. All the resulis that were derived from the classical
formulation of the second law in Chapter 7 can be re-derived with the entropy balance
equation applied to the cyclic devices. For all reversible processes, entropy generation is
zero and all real (irreversible) processes have a positive entropy generation, How large the
entropy generation is depends on the actual process.

Thermodynamic property relations for s are derived from consideration of a re-
versible process and leads to Gibbs relations. Changes in the property s are covered
through general tables, approximations for liquids and solids, as well as ideal gases.
Changes of entropy in various processes are examined in general together with special
cases of polytropic processes, Just as a reversible specific boundary work is the area
below the process curve in a P—u diagram, the reversible heat transfer is the area below
the process curve in a T—s diagram.

You should have leamed a number of skills and acquired abilities from studying
this chapter that will allow you to

* Know that Clausiug inequality is an alternative statement of the second law.

» Know the relation between the entropy and the reversible heat transfer.

» Locate states in the tables involving entropy.

» Understand how a Carnot cycle looks in a 7-s diagram.

* Know how different simple process curves look in a s diagram,

* Understand how to apply the entropy balance equation for a control mass,

» Recognize processes that generate entropy and where the entropy is made.

* Evaluate changes in s for liquids, solids, and ideal gases.

* Know the various property relations for a polytropic process in an ideal gas.

* Know the application of the unsteady entropy equation and what a flux of 5 is.
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The Second Law of Thermodynamics

Water flows down a hill, heat flows from a hot body to a cold one, rubber bands unwind,
fluid flows from a high-pressure region to a low-pressure region, and we all get old! Our
Experiences in life suggest that processes have a definite direction. The first law of
thermodynamics relates the several variables involved in a physical process, but does not
give any information as to the direction of the process. It is the second law of
thermodynamics that helps us establish the direction of a particular process.

Consider, for example, the work done by a falling weight as it turns a paddle wheel thereby
increasing the internal energy of air contained in a fixed volume. It would not be a
violation of the first law if we postulated that an internal energy decrease of the air can
turn the paddle and raise the weight. This, however, would be a violation of the second
law and would thus be impossible.

In the first part of this chapter, we will state the second law as it applies to a cycle. It will
then be applied to a process and finally a control volume; we will treat the second law in
the same way we treated the first law.
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A Figure 5.1 Illustrations of spontaneous processes and the eventual attainment
of equilibrium with the surroundings. (a) Spontaneous heat transfer. (b) Sponta-
neous expansion. (c¢) Falling mass. 7



Statements of the Second Law

CLAUSIUS STATEMENT OF THE SECOND LAW

The Clausius statement of the second law asserts that: It is impossible for any system to
operate in such a way that the sole result would be an energy transfer by heat from a
cooler to a hotter body.
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It is impossible for any system to operate in a thermodynamic cycle and deliver a net
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5.1 Heat Engines, Heat Pumps, and Refrigerators

We refer to a device operating on a cycle as a heat engine, a heat pump, or a refrigerator, depending
on the objective of the particular device. If the objective of the device is to perform work it is a heat
engine; if its objective is to transfer heat to a body it is a heat pump; if its objective is to transfer heat
from a body, it is a refrigerator.

Generically, a heat pump and a refrigerator are collectively referred to as a refrigerator. A schematic
diagram of a simple heat engine is shown in Fig. 5.1. An engine or a refrigerator operates between two
thermal energy reservoirs, entities that are capable of providing or accepting heat without changing
temperatures. The atmosphere and lakes serve as heat sinks; furnaces, solar collectors, and burners
serve as heat sources. Temperatures TH and TL identify the respective temperatures of a source and a
sink. The net work W produced by the engine of Fig. 5.1 in one cycle would be equal to the net heat
transfer, a consequence of the first law :

W=0,-0,

where QH is the heat transfer to or from the high-
temperature reservoir, and QL is the heat transfer TR Heat
to or from the low-temperature reservoir.

If the cycle of Fig. 5.1 were reversed, a net work
input would be required, as shown in Fig. 5.2. A
heat pump would provide energy as heat QH to
the warmer body (e.g., a house), and a refrigerator
would extract energy as heat QL from the cooler
body (e.g., a freezer). The work would also be
given by above equation , where we use
magnitudes only.

Figure 5.2 Arefrigerator. Figure 5.1 A heat engine.



The thermal efficiency of the heat engine and the coefficients of performance (abbreviated COP) of
the refrigerator and the heat pump are defined as follows:

W Q, . Cy f'{w—f‘i— %
'rrl - {-}_ IC‘(:;']:]‘rn1rlgr - ? { CIP‘"J" - H,' o W T- T.-
H "’
. W T Wienergy sought) Oy — O
_J"Ii—.}—l—— Thienmal — h == =] —-==
(0, . Oy (energy that costs) Oy Oy

where W is the net work output of the engine or the work input to the refrigerator.

Each of the performance measures represents the desired output divided by the input (energy that is
purchased).

The second law of thermodynamics will place limits on the above measures of performance. The first
law would allow a maximum of unity for the thermal efficiency and an infinite coefficient of
performance. The second law, however, establishes limits that are surprisingly low, limits that cannot
be exceeded regardless of the cleverness of proposed designs.

One additional note: There are devices that we will refer to as heat engines that do not strictly meet
our definition; they do not operate on a thermodynamic cycle but instead exhaust the working fluid
and then intake new fluid. The internal combustion engine is an example. Thermal efficiency, as
defined above, remains a quantity of interest for such engines.

Heat engines vary preatly in size and shape, from large steam engines, gas turbines,
or jet engines, to gasoline engines for cars and diesel engines for trucks or cars, to much
smaller engines for lawn mowers or hand-held devices such as chain saws or trimmers.
Typical values for the thermal efficiency of real engines are about 35-50% for large power
plants, 30-35% for gasoline engines, and 35-40% for diesel engines. Smaller utility-type
engines may have only about 20% efficiency, owing to their simple carburetion and con-
trols and to the fact that some losses scale differently with size and therefore represent a
larger fraction for smaller machines, '
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Heat Pump and Refrigerator
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Example

An automobile engine produces 136 hp on the ontput shaft with a thermal efficiency of
30%. The fuel it burns gives 35 000 kJ/kg as ¢nergy rclease. Find the total rate of CLCIEY
rejected Lo the ambient and the rate of fuel consumption in kg/s. -
Solution

From the definition of a heat engine efficiency, Eq 7.1, and the conversicn of hp ﬁum
Table A1 we have: :

W a}quH 136 hp X 07355 kKW/hp = lﬂﬂ_]{‘m‘é" .
Oy = Wity = 100/0.3 = 333 kW R
The energy equation for the overall engine gives:
D=0y~ W= {1 —03)0y=233 kW
From the energy release in the burning we have: O, = My 50
I35 kW

= Ol = 35 000 kI/kg = 00095 kg/s
Fadiator .
Adr Inkz ke Titer =

- FTTTN AT =

Sl Arnospherc.
' ar




The refrigerator in a kitchen shown in Fig, 7.7 weceives an elsctiical input power of
Example {56 w to drive the system, and it rejects 400 W to the Kitchen. air, Find the rate of en-
ergy taken out of the cold space and the eoefficiant nf performance o7 the refrigerator.

Kitskam air

e =
W
Inelds rshig aratar O
Solution . - _ Sk : :
C.V. refrigerator. Assume steady statc s0 ﬂ cre is no stnragc crf tncrgy. Tlm mfmmallml

prcvided is = 150 W, and the heal rejected is QH = #DDW BE o
The enciey Q:QLIdllL‘l 1 gl“."i:'.b -

This 18 also the rate of energy transfer into the cold space fmm hc w&rmcr I-:ttchm duc '.
to heat fransfer and sxckange of cold air inside with warm zir when you D]]El}, tha d{!l)l‘
From the definition of the coefficient of perforinance, Eq . 2 ' T

O _ 250
COPrefrig ; 150 l_ﬁ?
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5.3 Reversibility
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5.5 The Carnot Engine

The heat engine that operates the most efficiently between a high-temperature reservoir and a low-
temperature reservoir is the Carnot engine. It is an ideal engine that uses reversible processes to
form its cycle of operation; thus it is also called a reversible engine. We will determine the efficiency
of the Carnot engine and also evaluate its reverse operation.

Applying the first law to the cycle, we note that

Q,-0,=W_

Insulator

23

1 — 2: Isothermal expansion. Heat is transferred reversibly from the
high-temperature reservoir at the constant temperature T . The piston in the
cylinder is withdrawn and the volume increases.

I = const.
2 — 3: Adiabatic reversible expansion. The cylinder is completely

insulated so that no heat transfer occurs during this reversible process. The

piston continues to be withdrawn, with the volume increasing.

3 — 4: Isothermal compression. Heat is transferred reversibly to the low-
temperature reservoir at the constant temperature T . The piston compresses
the working substance, with the volume decreasing.

4 — 1: Adiabatic reversible compression. The completely insulated
cylinder allows no heat transfer during this reversible process. The piston
continues to compress the working substance until the original volume,
temperature, and pressure are reached, thereby completing the cycle.

17



Applying the first law to the cycle, we note that
Op—0, =W,

where Q, is assumed to be a positive value for the heat transfer to the low-temperature
reservoir. This allows us to write the thermal efficiency [see Eq. (5.2}] for the Carnot
cycle as

The following examples will be used to prove the following three postulates:

Postulate 1 [t is impossible to construct an engine, operating between two given
temperature reservoirs, that is more efficient than the Carnof engine.

Postulate 2 The efficiency of a Carnot engine is not dependent on the working
substance used or any particular design feature of the engine.

Postulate 3 All reversible engines, operating between two given temperature res-

ervairs, have the same efficiency as a Carnot engine operating between the same
two temperatire reservoirs.

18



5.6 Entropy

M ey Al sl & =entropy (
el il (il 8 shasll g bl Ll L 5 Y
PN Akl Clleadl dalady ety o pll
Al all Saalinll oo, Lol AleeS S gl diay g Sl
M 5 )" Al ) dasay o Lolali Coasy s 1 sy
il jal aea & Jomy iy il saly  Llals sl e
ghis~ s

48 o gy b))
A 5 ) Aaill An s ) + Al A 5 ) LSl
L 5 Yl el Al SIFp N !
o L Lasis | SailSae Al sl
e g Joall
4 SR L g A3Y)
Ll mald Ll Landa a5 Jou
Lot ¢3S L g i) 4l " Ales
. Lt 5 il 5S4
28 Gy )k 4 g Cllee dleall

5

19



L gAY
S ! Algind LSl
ale Lal Al all Kaaliall ple pab ) Sl
) bl &l ja Py Al il Jemy (
Lenasi 3 lanall 3 ) : 3 kg (Sl
ol L .
S g ZERS el . ! ! B3 )ked)
daaS Lipland  laas g LS A "

B S gt (S il Al a5 L g Y s s 9IS
) a3l e ua
Al Al axaS alayy)
Arlgill 45 ) T o5 Rsie O
A4S ypadi WiSay (g gann gAS . ZoAs A

. Lol el L] Gk e
il J g8y 4yl pal) Kbl . i€y Lagin Gl (31 sk

adgiile 138 3l o A S e Lein 055 A Se
4l all il

20



5.6 Entropy

To allow us to apply the second law of thermodynamics to a process we will identify a property called entropy. This will
parallel our discussion of the first law; first we stated the first law for a cycle and then derived a relationship for a
process.

Consider the reversible Carnot engine operating on a cycle consisting of the processes described in Sec. 5.5. The
quantity §62/T is the cyclic integral of the heat transfer divided by the absolute temperature at which the heat transfer
occurs. Since the temperature TH is constant during the heat transfer QH and TL is constant during heat transfer QL, the
integral is given by

;9 9y @
N My T
where the heat QL leaving the Carnot engine is considered to be positive. Using Egs.
T =
T A el X
Ty S o, |
i i @
we see that, for the Carnot cycle, ' \TTML
o1 . 9.0 | -
(—jh' T?.’ TH TL
Substituting this into Eq. *, we find the interesting result |
o |
50 _, |
T : i

Thus, the quantity 6 Q/T is a perfect differential, since its cyclic integral is zero. We let this differential be denoted by
dS, where S depends only on the state of the system. This, in fact, was our definition of a property of a system. We
shall call this extensive property entropy; its differential is given by

60
T

rev

db

21



where the subscript “rev” emphasizes the reversibility of the process. This can be integrated for a process to give

ey

From the above equation we see that the entropy change for a reversible process can be either positive or negative
depending on whether energy is added to or extracted from the system during the heat transfer process. For a
reversible adiabatic process (Q = 0) the entropy change is zero. If the process is adiabatic but irreversible, it is not

generally true that AS = 0.

We often sketch a temperature-entropy diagram for cycles or processes of interest. The Carnot cycle provides a
simple display when plotting temperature vs. entropy; it is shown in Fig. 5.7. The change in entropy for the first

isothermal process from state 1 to state 2 is
200 0,
v A L

H

S: - 51 = J‘|

-

The entropy change for the reversible adiabatic process from state 2 to state 3 is '#

zero. For the isothermal process from state 3 to state 4 the entropy change is
negative that of the first process from state 1 to state 2; the process from state 4 to
state 1 is also a reversible adiabatic process and is accompanied with a zero entropy
change. The heat transfer during a reversible process can be expressed in differential
form as
oQ
S

ol

i)

ds S0=TdS or Q= [f?.:rs

revy

@ @
————— . «(3)
0} =
]
I
| |
== | |
I |
8 5,
Figure 87 The Curnol evele

Hence, the area under the curve in the T-S diagram represents the heat transfer during any reversible process. The
rectangular area in Fig. 5.6 thus represents the net heat transfer during the Carnot cycle. Since the heat transfer is
equal to the work done for a cycle, the area also represents the net work accomplished by the system during the

cycle. For this Carnot cycle Qm =W =ATAS.

net



The first law of thermodynamics, for a reversible infinitesimal change, becomes, using the last equation,
TdS — PdV =dU

This is an important relationship in our study of simple systems. We arrived at it assuming a reversible process.
However, since it involves only properties of the system, it holds for any process including any irreversible process. If
we have an irreversible process, in general, 8W # PdV and 6Q # TdS but previous equation still holds as a relationship
between the properties since changes in properties do not depend on the process. Dividing by the mass, we have

Tds— Pdv=du  **

where the specific entropy is s = S/m.
To relate the entropy change to the enthalpy change we differentiate the definition of enthalpy and obtain

dh=du+ Pdv+ vdP
Substituting into Eq. ** for du, we have

Tds=dh—vdP ***

Equations ** and *** will be used in subsequent sections of our study of thermodynamics for various reversible and
irreversible processes.



A rigid tank of volume 0.5m® contains saturated water mixture
with quality of 50% at 120°C is heated until its temperature becomes
200°C. Find (a) final state of the water and pressure, (b) heat transfer
(¢) change of entropy.

Solution: Thegiven rigid tank V=0.5m’ sat water T1=120°C, x1=0.5
The final temperature is T2=200°C
At T,= 120°C and from sat. Water table it 1s found that

Vo = 0.001060m° (kg v,y =0.891%m" kg
iy =503.5k kg u,, =2025.8k7 kg

s, =1.5276k] lkg. K s, =5.602k]kg.X
vy = v, +x (v, — v, )= 000106+05x(0.8919-0.00106)= 044648m° /kg

q
e =112k
v, 0.44648

Wy =gy + X2y = 503.5+0.5%2025.8 =1516.4k / kg
8, =8, + %8, =1.5276+ 0,525,602 = 4.3286k] [ kg. K
Because the tank is rigid v, = v,

v, =0.44648m° kg at T, =200°C

It is found that the second state is super-heated steam because v, >v,
at the temperature 200°C. The pressure is between 0.4MPa and

0.5MPa
 And by using the interpolation as follows
]S i\’ﬂ}ﬂ E ggi lf,g gﬁﬁgﬁg i IIC%?F (a) the final pressure is P.=480kPa
2t LEAC e T (o) (b)because the tank is rigid
la’rg gjjggs ,:,gj%ﬁg? g“g%% O =AU = miu =1.12(2646.67-1516.4) = 1265.9k7

AS = mhs =m(s, —s,)=1.12(7.0812 — 4.3286 = 3.083



Piston cylinder contains 2kg of steam at a pressure of 200kPa
and quality of 75% is heated with constant pressure unftil it becomes

dry saturated vapor. Find (a) the work done (b) the heat transfer and
(c) the change in entropy.

Solution: the given sat. water mixture at P;=200kPa and x,=0.75
m=2Kkg, the final state is sat. vapor at the same pressure of 200kPa.
(@v,=v,+xv, and v,=v_ at P=200kPa

W = P(Vz - Vl)= Pm(w2 —w1}= Py, - (vf + xlvfg))

W = Pmly, — %, )Pm(l—x)@, —v,) = 200 x 2 x (1-0.75)(0.8857 —0.001061 )
W = 88.464 k]

(b) b =h.+xh, and h, =4,

Q=mAh=mlh, —h)=ml—x b, =2x(1-0.75)x2209.1=1104.55/

(k) 5, =5,+x5, and §5,=3,

A =m(sy—5) =ml-x)s5, =2x (1- ﬂ.?i}xi.ig? = 27985k /K



Piston cylinder device contains 0.5kg of refrigerant-12 at 20°C
and quality of 40%. The refrigerant is expanded isothermally until its
final pressure becomes 240kPa. Find (1) the change in entropy (2)
heat transfer (3) the work done.

Solution: the given R-12 T=T»=20°C, x;=0.4, P,=240kPa
At the initial state

Iy =U,+ X, =54.44+0.4x(178.32 - 54.44)=103 9924/ / kg

5§ =8, +x5, =02078 +.4x(0.6884 —0.2078 )= 0.4k / kg. &

At the final state
i, =182.53k] [kg &, =0.7624kJ kg .K
(1) As=m(s, —5,)=05%(0.7624 -0.4)= 01812k / K
(2) The process is isothermal so T=constant
Q= [Tds =T |dS = TAS = (20 + 273)x0.1812 = 53.0024
(3) W=0-AU=53.092-0.5%(182.53-103.992) = 13.787 &/



One kg of steam at a pressure of 700kPa and quality of 80% is
expanded hyperbolically to a pressure of 150kPa. Determine (a) the
final state of the vapor and (b) change in entropy
Solution: the given m=1kg , P1=700kPa, x,=0.8 , P,=150kPa
The Process 1s hyperbolically PyV=P,V,

At P=700kPa, x,=0.8
v =v, +x(v, —v,)= 0001108 + 0.8 % (0.0.2729 — 0.001108 ) = 0.21854 m* / kg
S =8,+x5, =19922 + 0.8x4.7158 = 5.76484S / kg K

Rv,  700x0.21854
W L i = 1.01985m° / kg
3 150

v, <v, at B =150kFa

v;—v; 1.0198 — 0.001053
v, —v, 115930001053
5, =8, = 1,5, =1.4336 +0.8796 x5.7897 = 6.526kJ /kg.K
A5 =m(s, —5,)=1x(6.526 — 5.7648 ) = 0.7612 kJ / K

Xy = = (.§796 = §7.90%




ENTROPY FOR AN IDEAL GAS WITH CONSTANT SPECIFIC HEATS

Assuming an ideal gas

du Pdv dT dv
Tds—Pdv—du becomes ds=— +T: CF?+ R— where we have used du = C,dT and Pv = RT.
Ir
Last equation is integrated, assuming constant specific heat, to yield
T. 0,
s, -5=CIn *1 Rln “* U
) L o
7} F‘T
lds —dh —odP Similarly, this equation is rearranged and integrated to give 5, — 3§, = Cj,, lll?'— RlIn .F; w2
! !

Note again that the above equations were developed assuming a reversible process; however, they relate the
change in entropy to other thermodynamic properties at the two end states. Since the change of a property is
independent of the process used in going from one state to another, the above relationships hold for any
process, reversible or irreversible, providing the working substance can be approximated by an ideal gas with
constant specific heats.

If the entropy change is zero, as in a reversible adiabatic process, Egs. 1 and 2 can be used to obtain

PR ok I
T_,._{p] r_._[P__.] P [
n \n I, \ R A \7

These are, of course, identical to the equations obtained in Chap. 4 for an ideal gas with constant specific heats
undergoing a quasiequilibrium adiabatic process. We now refer to such a process as an isentropic process.




EXAMPLE 5.6
Air is contained in an insulated, rigid volume at 20°C and 200 kPa. A paddle wheel, inserted in the volume, does 720 kJ

of work on the air. If the volume is 2m3, calculate the entropy increase assuming constant specific heats

Solution
To determine the fi nal state of the process we use the energy equation, assuming zero heat transfer. We have

-W=AU=m C,AT . The mass m is found from the ideal-gas equation to be
PV 2002

RT 0.287%x293
The first law, taking the paddle-wheel work as negative, is then

4.76 ke

&

M=

—W-=mC_ AT
—(=720)=4.76 x 0.7 Tx(T, —293) s T,=5040K
Using Eq. ( 1) for this constant-volume process there results AS=mC_ In—=1./6x0.717 = InTﬂ= 1.851 KIVK

EXAMPLE 5.7 ]

After a combustion process in a cylinder the pressure is 1200 kPa and the temperature is 350°C. The gases are
expanded to 140 kPa with a reversible adiabatic process. Calculate the work done by the gases, assuming they can be
approximated by air with constant specific heats.

Solution
The first law can be used, with zero heat transfer, to give -—-w=Au=0C_(T.-T ) The temperature T2 is found

from Eq. (2) to be

[E=1¥% 0484

T1=T,{‘E} _rs.33|r]m]'"=337K
LBy

This allows the work to be calculated:

w=C.(Ty=T))=0717 (623 337) =205 kl/kg



0.05m’ of air at a pressure of 800kPa and temperature 20°C
expands to eight times its original volume and the final temperature
after expansion i1s 25°C. Calculate the change of entropy of air during
this process.
Solution: the givens air V,=0.05m?, P;=800kPa, T;=20°C=293K
V, = 8xV, =8x0.05=0.4m>, T7=25°C=298K

BV, 800 x0.05
= 0 0.476ke
RT, 0.287 x 293

4
AS = mLC‘u‘LH “2 | RpIn
l

B |J~:

W 0.476{ 0.718In 20 4 0.287 Ln> | = 0.20k7 / K
; 203 1

Calculate the change of entropy of 2kg of air, when it 1s heated
at constant volume from 100kPa to 400kPa. Also calculate the heat
transfer during the process.

Solution: the given Air m=2kg, P;=100kPa, P,=400kPa, and the
volume is constant then

2 400
AS =mCvin—2=2x0.718 Ln—=1.991kJ / K
R 100



Air occupies 0.084m’ at 1.25MPa and 537°C. It is expanded at a
constant temperature to a final volume of 0.336m?. Calculate:
(1)  the pressure at the end of expansion, (ii) work done
during expansion (ii1) heat transfer to the air, and
(1v) the entropy
Solution: the givens air V;=0.084m’, P;=1250kPa,
T;=T»=537°C=810K, V,=0.336m’

: I 0.084
1) R=BR-L=1250x =312.5kPa
v, 0.336
2 v, 0.336
(1) W = BV Ln—2 =1250 % 0.084 x Ln——— =145 561k
v, 0.084

1
(1i1) Q=W=145.56kJ
(IV)AS = % = 14;1';61 =0.18kJ /K




A volume of 0.14m? of air at 100kPa and 90°C is compressed to
0.014m? according to PV-°=const. Heat is then added at a constant
volume until the pressure 1s 6600kPa. Determine:

(1) heat exchange with the cylinder walls during
compression, and
(2) Change of entropy during each portion of the process.
Solution: given Air V;=0.14m’, P;=100kPa, T\=90°C, V,=0.014m°,

P3=6600kPa, RV;® =PV 3, ¥, =V,

RV,  100x0.14
RT,  0.287 x (90 + 273)

7 0.14 Y
T,=T|L| =363]—— =724 28K
7 0.014

v Y 0.14 \"?
B=RB|—=| =100| —| =1995kPq
014

il =

£g) 0.
mRI\T, - T, 0.1855 x0.287 x (724.28 — 363
12 = i : 1): = ] ><1(; }= —-64.11k7
-7 -1.

AU, = mCv(T, — T,) = 0.1855 x 0.718 x (724.28 — 363 ) = 48.12kJ
O, =W, + AU, = —64.11+ 48.12 =15 99k

Cv(k - T, 0.1855 x0. 4 - 724.

AS, = mCv(k 1)LH_2= 0.1855 x0.718(1.4 1]Ln; A8 _ o masss v i
(n—1) T 1.3=1 363

The second process is constant volume process so

6600

P
AS,, = mCvIn===0.1855 x 0.718 x Ln—— = 0.159kJ / K
A

P, 199:



ENTROPY FOR STEAM, SOLIDS, AND LIQUIDS

The entropy change has been found for an ideal gas with constant specific heats and for an ideal gas with variable
specific heats. For pure substances, such as steam, entropy is included as an entry in the steam tables (given in

App. C). In the quality region, it is found using the relation
$=5,+X8,

Note that the entropy of saturated liquid water at 0°C is arbitrarily set equal to zero. It is only the change in
entropy that is of interest.

For a compressed liquid it is included as an entry in Table C.4, the compressed liquid table, or it can be
approximated by the saturated liquid values sf at the given temperature (ignoring the pressure). From the
compressed liquid table at 10 Mpa and 100°C, s = 1.30 kJ/kg - K, and from the saturated steam table C.1 at 100°C,
sf=1.31 kJ/kg - K; this is an insignificant difference.

The temperature-entropy diagram is of particular interest and is often sketched during the problem solution. A T-s
diagram is shown in Fig. 5.8; for steam it is essentially symmetric about the critical point. Note that the high-
pressure lines in the compressed liquid region are indistinguish able from the saturated liquid line. It is often
helpful to visualize a process on a T-s diagram, since such a diagram illustrates assumptions regarding
irreversibilities.

For a solid or a liquid, the entropy change can be found quite easily if we can
assume the specific heat to be constant. Returning to Eqg. (1), we can write,
assuming the solid or liquid to be incompressible so that dv =0,

Tds =du=CdT

where we have dropped the subscript on the specific heat since for solids and
liquids Cp = Cv, such as Table B.4, usually list values for Cp; these are assumed to
be equal to C. Assuming a constant specific heat, we find that

7,
ﬂs—j'CE—(‘lnrl =0
5~ o T

If the specific heat is a known function of temperature, the integration can be
performed. Specifi c heats for solids and liquids are listed in Table B.4.

Mres s e

High
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EXAMPLE 5.10

Steam is contained in a rigid container at an initial pressure of 600 kPa and
300°C. The pressure is reduced to 40 kPa by removing energy via heat transfer.
Calculate the entropy change and the heat transfer.

Solution

From the steam tables, v, = v, = 0.4344 m’/kg. State 2 is in the quality region.
Using the above value for v, the quality is found as follows:

0.4344 =0.0011+x(0.4625—-0.0011) sz =0.939

The entropy at state 21s 5, = 1.777 + 0.939x5.1197 = 6.584 kl/kg - K.
The entropy change is then

As =s5,— 5, =6.584—7.372= —0.788 kl/kg-K

The heat transfer is found from the first law using w = 0 and u, = 2801 kJ/kg:

g =1, — ;= (604.3 + 0.939 % 1949.3)— 2801 = — 366 kl/kg
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Quiz No. 1

1. Aninventor claims a thermal engine operates between ocean layers at 27 and
10°C. It produces 10 kW and discharpes 990 kl/min. Such an engine is

(A) Impossible
{B) Reversible
(C) Possible
{D) Probable

2. Aheat pump is to provide 2000 kl/h 1o a house maintained at 20°C. If it is
=20°C ountside, what is the minimum power requirement?

(A) 385 klh
(B) 316 k)
(C) 273 ki
(D) 184 klih

3. Select an acceptable paraphrase of the Kelvin-Planck statement of the
second law.

{A&) No process can produce more work than the heat that it accepts.
{B} No engine can produce more work than the heat that it intakes.
(C)} Anengine cannot produce work without accepting heat.

(D) An engine has to reject heat.

4, A power plant burns 1000 kg of coal each hour and produces 500 kW of
power. Caleulate the overall thermal efficiency if each kg of coal produces
6 MJ of energy.

{A) 0.35
(B) 0.30
(C) 0.25
(D) 0.20

. Two Carnot engines operate in series between two reservoirs maintained

at 327 and 27°C, respectively. The energy rejected by the first engine is
input into the second engine. If the first engine’s efficiency is 20 percent
greater than the second engine’s efficiency, calculate the intermediate
temperature.

(A) 106°C
(B) 136°C
(C) 243°C
(D) 408°C

A heat pump is to maintain a house at 20°C when the outside air is at
—25°C. It is determined that 1800 kJ is required each minute to accomplish
this. Calculate the minimum power required.

(A) 3.87 kW
(B) 423 kW
(C) 4.61 kW
(D) 3.99 kW

. Which of the following entropy relationships is incorrect?

(A) Air, V=const: As=C,InT,/T,
(B) Water: As=C, InT,/T,

(C) Reservoir: As=C, InT,/T,
(D) Copper: As=C,InT,/T,

. Two kilograms of air are heated at constant pressure of 200 kPa to 500°C.

Calculate the entropy change if the initial volume 1s 0.8 m’.
(A) 204 KI/K
(B) 2.65 kI/K
(C) 3.12KI/K
(D) 4.04 KI/K

. Two kilograms of air are compressed from 120 kPa and 27°C to 600 kPa in

a rigid container. Calculate the entropy change.
(A) 5.04 KK
(B) 4.65kVK
(C) 3.12KVK
(D) 2.31 KWK



10.

11.

12.

13.

4.

A paddle wheel provides 200 k) of work to the air contained in a 0.2-m’
rigid volume, initially at 400 kPa and 40°C. Determine the entropy change
if the volume is insulated.

(A) 0.504 kKIVK
(B) 0443 KVK
(C) 0312 KWK
(DY 0.231 kKWK

0.2 kg of air is compressed slowly from 150 kPa and 40°C 10 600 kPa, in
an adiabatic process. Determine the final volume.

(A) 0.0445 m’
(B) 0.0662 m’
(C) 0.0845 m°
(D) 0.0943 m’*

A rigid, insulated 4-m” volume is divided in half by a membrane. One
chamber 15 pressunzed with air to 100 kPa and the other is completely

evacuated. The membrane is ruptured and after a period of time equilibrium

is resiored. The entropy change of the air is nearest
(A) 0.624 KK
(B) 0.573 KI/K
(C) 0473 kK
(D) 0.351 kI/K
Ten kilograms of air are expanded isentropically from 500°C and 6 MPa 1o
400 kPa. The work accomplished is nearest
(A} 7400 kJ
(B) 6200 kJ
(C) 4300 kJ
(D) 2990 kJ

Find the work needed to isentropically compress 2 kg of air in a cylinder at
400 kPa and 400°C to 2 MPa.

(A) 1020 kJ
(B) 941 kJ
(C) T87kJ
(D) 563 kJ

15.

16.

17,

Calculate the total entropy change if 10 kg of ice at 0°C are mixed in an
insulated container with 20 ke of water at 20°C. Heal of melting for ice is
340 kl/kg.

(A) 6.19 KK
(B) 3.95 k/K
(C) 1.26 KIVK
(D) 0214 KI/K

A 5-kg block of copper at 100°C is submerged in 10 kg of water at 10°C,
and after a period of time, equilibrium is established. If the container is
insulated, calculate the entropy change of the universe.

(A) 0.082 kIVK

(B) 0.095 kI/K

(Cy 0.108 KK

(D) 0116 kK
Find w_of the insulated turbine shown.
Steam

6 MPa r

40 kPa
B0°C [

x=0
Wr

-
-

(A) 910 kI/kg
(B) 1020 kI/kg
(C) 1200 k¥/kg
(D) 1430 kifkg

18. The efficiency of the turbine of Prob. 17 is nearest

(A) 92%
(B) 89%
(C) 85%
(I 81%



19. A nozzle accelerates steam at 120 kPa and 200°C from 20 m/s to the
atmasphere. I it is 85 percent efficient, the exiting velocity is nearest

(&) 290 m/s
(B) 230 m/s
(C) 200 m/s
(D) 185 mfs

20. A turbine produces 4 MW by extracting energy from 4 kg of steam which
flows through the turbine every second. The steam enters at 600°C and
1600 kPa and exits at 10 kPa. The turbine efficiency is nearest

(A) 82%
(B) 85%
(C) 87%
(D) 91%

Quiz No. 2

1. An engine operates on 100°C geothermal water. It exhausts to a 20°C
stream. Its maximum efficiency is nearest

(A) 21%
(B) 32%
(C) 58%
(D) 80%
2. Which of the following can be assumed to be reversible?
(A) A paddle wheel
(B) A burst membrane
(C) A resistance healer
(D) A piston compressing gas in a race engine

3. A Camot engine operales between reservoirs at 20 and 200°C. If 10kW o
power is produced, find the rejected heat rate.

(A) 263 Kklfs
(B) 20.2 klfs
(C) 163 klis
(D) 12.0kdis

4. An automobile that has a gas mileage of 13 km/L is traveling at 100 km/h.

At this speed essentially all the power produced by the engine is used to
overcome air drag. If the air drag force is given by 4 pV*AC , determine the
thermal efficiency of the engine at this speed using projected area A =3 m?,
drag coefficient C, = 0.28, and heating value of gasoline 9000 kl/kg. Gasolin
has a density of 740 kg/m’.

(A) 0.431
(B) 0.519
(C) 0.587
(D) 0.652

. A proposed power cycle is designed to operate between temperature

reservoirs of 900 and 20°C. It is supposed to produce 43 hp from the
2500 kJ of energy extracted each minute. Is the proposal feasible?

(A) No

{B) Yes

(C) Maybe

(D) Insufficient information

. A Carnol refrigeration cycle is used to estimate the energy requirement

in an attempt to reduce the temperature of a specimen to absolute zero.
Suppose that we wish to remove 0.01 ] of energy from the specimen when

it is at 2 » 10-% K. How much work is necessary if the high-temperature
reservoir is at 20°C?

(A) 622 k]
(B) 864 kJ
(C) 1170 k]
(D) 1465k

7. One kilogram of air is heated in a rigid container from 20 to 300°C. The

entropy change is nearest
(A) 0.64 KI/K
(B) 0.54 kI/K
(C) 0.48 KK
(D) 0.34 KI/K



11,

- Which of the following secord law statemzants is incorreci”

(A] "The entrapy of an isalated system st remain eonstart or nereesa.

(R} 'Ihe entrapy of a hor copper hlnck decreases as ir cools

(€ IWice is melted in water 10 an insnlated confainar, e net enteapy
docncasas,

(LY Work must b tnput if enesgy is transferrad from a cold body toa
hot body.

A pisten allows air o expusd Tron & MPa o 200 5Pa. The jniial volums

el ternperature are 300 o and B00°C 1T the tempereture i beld coosiao
calcolate the: entrapy change.

(A} T8 Tlik
() 937 <lik
(C) &37 <K
M) 74 <K

. The entropy change in a certain axpansion nrocess 18 5.2 kKIFK. The

nitrogen, initially at 80 kPa, 27°C, and 4 m’, achicves a final temperaturs ol
127°C. Caleulata the final volume.

(A} 255 o’
(B} 223 n??
(C; 58n?
(T 126’
A pisten is inserted into a cvlinder cauzing the trezsure in the airto chenge

trom 50 to AN kHa while tha temperature remairs constart at 24907 Ta
accon-plish this, Fert transfer rst ncoor, Daterming the entriopy char pe.

(Al —0382 kI K
B 0.38 kg K
C: L0 kike K
@ 1.26 kike K

12,

14,

16.

A torgue of 40 N-m is needed to rotaie @ shaft at <0 rd's. It is clitached to
a paddle wheel located in a rigid 2-m’ volume. Initially the temperature is
47°C and the pressurc 15 200 kKPa: if the paddic wheel rotetes for [0 min
and 3{W kJ of heat 15 transferred to the aur in the volume, determune the
entropy Increase assuming constant specific heats,

(A) 3.21 KI/K
(B) 281 LUK
(C) 2.50 kK
(D) 204 k1K

Four kilograms of air expand i oan isolated cylinder Croe 300 kPa ad
227°C 1o 20 kPa. Wha 1s the work ooiput?

(Ay R63 LI

(R) RG2 K]

(Ch 964 kI

(Dy 1250 k]
bteam. al a quality of 85 percent. 1s expanded 1n a cylinder ar a constant
pressure of 800 kPa by acding 2000 kl'kg of heat. Compute the entropy
INCrease.

(A 30kl kK

(B 3./4klMkz K

(C) 322k kz-K

(Dy 291 kM ka-K

Two dlograms of saturated steam at [00°C are contained in a cylinder, If the
steam undergoes an isentropic expansion o 20 kPa, determine the work outpu

(A) 376 k]
(B 427 kI
(C) a6d kI
(Dy o6kl

Ten kilograms of iron at 300°C are chilled in a larpe volume of ice and
water. Find the tolal entropy change.

(A) 0.88 kJ/K
(L LO1 kK
(C) 126 kK
(D Lbl KK



L7.

LE.

19,

Five kilograms of ice at —20°C are mixed with 10 kg of water initially at
20PC. I there is oo signilicant breat ransler o the conteiner, detenming
the net entropy change. It takes 330 kJ to met a kg of ice.

rA) 0.084 K
By 0.084 kI'K
C) .MM LK
Dy 1.24 1K

Two kiloprams of air are stored in a rigic voluma of 2 n2* with the
temperature initially at 300°C. Heat is transferred from the air until the
pressure reaches 120 k'a, Calculate the entropy chenge of the air.

(A)y 03292 LIFK
{By 0357 kIVK
(C) 0452 kIK
Dy —0.498 KI/K

Calzulate the entropy change of the univarse for Prob. IR if the
susroundings are at 27°C.

(A) 0.25Z kK
(B) 0.280 kKI'K
{Cy 0.328 KIVK
Iy 0.371 kIFK

Two hundred kilowatts are to ke oroduced by a steaim turbine, The cutlel
steam 15 to be saturatzed at BU kPa and the steam eatericg will be at 600,
For an izentropic procass, determine the mass fiow rate of steam.

(A) 0.342 kefs
(B} 0.287 kofs
(C) 0.198 kefs
() U116 zofs



