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ABSTRACT
In this paper we investigate the vibration of a string with a

rigid obstacle placed at one of its boundaries. During vibration,
a portion of the string wraps and unwraps around the obstacle.
The impact between the string and the obstacle during wrapping
is assumed to be inelastic. The length of the string that wraps
around the obstacle, is discretized into a finite number of seg-
ments for the purpose of analysis. These segments sequentially
collide with the obstacle starting from when the string makes first
contact with the obstacle till it comes to rest. During wrapping,
the energy of the string is dissipated through impact but during
unwrapping the energy is conserved. The geometry of the string
at any instant of time is determined from the boundary conditions
associated with wrapping and unwrapping of the string. A gen-
eral solution for vibration against convex obstacles of arbitrary
geometry was analysed and numerical simulation results are pre-
sented for elliptic- and circular-shaped obstacles with different
orientations and for different modes of string vibration. The re-
sults show that an obstacle at the boundary can be used as a
passive mechanism for vibration suppression. The energy dissi-
pated is found to be greater for higher modes of vibration and
for obstacle geometries that result in greater length of wrapping.

INTRODUCTION
The dynamics of strings vibrating against obstacles first ap-

peared in the technical literature with the work by Citrini [1].

Citrini examined point-shaped obstacles. The element of string
that comes in contact with such obstacles can be assumed to be
massless, and therefore the energy of the string, in the absence
of damping, was assumed to remain conserved. Amerio [2] in-
vestigated the motion of a string vibrating against a rigid wall by
modelling the unilateral constraint as a problem in impact. The
nature of the impact was assumed to be elastic hence energy is
conserving. Other researchers those work is based the premise of
energy conservation include Schatzman [3] and Haraux and Ca-
bannes [4]. In 1982, Burridge et al. [5] investigated the vibration
of the sitar in which the bridge form a broad support, rather than
a well-defined edge. During vibration, the sitar string wraps and
unwraps around the gentle slope of the bridge and the length of
the vibrating part of the string varies during oscillation [5]. Bur-
ridge et al. [5] modeled the impact of the string with the bridge
as perfectly inelastic, discarding the assumption of energy con-
servation. Subsequently, Bamberger and Schatzman [6] proved
the existence of solutions which do not conserve energy with ar-
bitrary obstacles and Ahn [7] claimed energy loss of the string
vibrating against flat obstacles. We investigate the vibration of a
string against a convex obstacle located at its boundary. We as-
sume the string to wrap and unwrap around the obstacle during
each oscillation and the wrapping to be perfectly inelastic. As-
suming that the string vibrates in a single mode at all times, it is
shown that energy loss is higher for higher modes of oscillation.
Although oscillation in a higher mode results in less wrapping,
higher energy loss results from higher kinetic energy of the string
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Figure 1. A STRING VIBRATING AGAINST AN OBSTACLE. IN
WRAPPED CONFIGURATION, (x̄, ȳ) DENOTES THE COORDINATE
WHERE THE STRING BREAKS CONTACT WITH THE OBSTACLE.

during impact. The obstacle constrains the motion of the string
and in this regard the mechanism for energy loss is a continuous-
system version of the energy dissipation methodology proposed
for finite degree-of-freedom systems by Issa, et al. [8]. Since the
energy of the string decreases even in the absence of damping,
the obstacle can be regarded as a passive mechanism for vibra-
tion suppression. A formal problem statement and a list of the
assumptions made in our analysis is provided in section 2. In
section 3 we present our analytical model for computing the ge-
ometry of the string as it wraps and unwraps around the obstacle.
In section 4 we provide simulation results for percentage energy
loss and length of wrapping during each cycle of oscillation for
different modes. Section 6 provides concluding remarks.

Problem Statement and Assumptions
Consider a string vibrating against an obstacle placed at one

of its boundaries, as shown in Fig.1. We made the following
assumptions:

1. The obstacle is rigid and has the following geometry

y = f (x), y(0) = 0,
[

dy
dx

]
x=0

= 0 (1)

2. The string is homogenous and has a constant mass per unit
length denoted by ρ. The tension in the string is equal to
T and remains constant at all times. The string undergoes
transverse vibration in the xy plane and is not affected by
gravity.

3. The amplitude of oscillation of the string is small and there-
fore the equation of motion of the string can be expressed by
the standard relation [11]

(
∂2y
∂x2

)
=

1
c2

(
∂2y
∂t2

)
, c ,

√
T/ρ (2)

where y(x, t) is the displacement of the string at a distance x
from the origin at time t.

4. The string wraps around the obstacle during vibration. Over
each time step during wrapping, a small element of the string
comes to rest on the obstacle through perfectly inelastic col-
lisions. The wrapping process continues till the freely vi-
brating portion of the string has no more kinetic energy.

5. The surface of the obstacle is not sticky and the string un-
wraps from the obstacle without any loss of energy.

6. At the initial time t = 0, the string has no contact with the
obstacle. It is in its mean position with zero potential energy
and kinetic energy equal to E0.

7. The string continues to vibrate in the mode in which it
started its vibration at the initial time. This implies that each
point of the string, not in contact with the obstacle, has the
same frequency of vibration1 at any instant of time, and the
number of nodes in the vibrating string remains constant.

8. The string has no internal damping, i.e., the energy of the
string will remain conserved during free vibration.

Analytical Model
Boundary conditions and general solution

A general solution to the partial differential equation in
Eq.(2) can be written as [11]

y(x, t) = (α1 sinλx+α2 cosλx) (α3 sinωt +α4 cosωt) (3)

where αi, i = 1,2,3,4 are constants, ω is the circular frequency
and λ is related to ω by the relation

ω , cλ (4)

At time t = 0, the string is at the mean position, i.e. y(x,0) ≡ 0,
per assumption A6. Therefore, the solution in Eq.(3) is reduced
to the form

y(x, t) = (Asinλx+Bcosλx) sinωt (5)

At the right boundary, the string satisfies y(l, t) = 0 for all t. Thus
Eq.(5) takes the form

y(x, t) = A(sinλx− tanλl cosλx) sinωt (6)

1The frequency of the string is not constant; it varies with time and amplitude
when the string wraps and unwraps around the obstacle.
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We now consider the boundary conditions at the contact break
point. From Fig.1 we have

f (x̄) = y(x̄, t) =⇒ f (x̄) = A(sinλx̄− tanλl cosλx̄) sinωt (7)

Also, the string is tangential to the obstacle at the contact break
point x = x̄, i.e.,

f ′(x̄) =
∂y
∂x

(x̄, t) =⇒ f ′(x̄) = λA(cosλx̄+ tanλl sinλx̄) sinωt
(8)

From Eqs.(7) and (8) we get

tanλ(l− x̄) =−λ
f (x̄)
f ′(x̄)

(9)

which indicates that λ can be computed from the value of x̄. The
solution of Eq.(9) is however not unique - each non-trivial value
of λ corresponds to a mode of vibration of the string. Since λ is
an implicit function of x̄, we can rewrite Eq.(8) as follows

Asinωt = g(x̄), g(x),
f ′(x)

λ(cosλx+ tanλl sinλx)
(10)

Equation (10) can be used to compute t from the value of x̄. The
existence of the solution, however, depends on the magnitude of
A. We now discuss the procedure for computing A.
Let the total energy of the string at any time t be denoted by E.
Then,

E = Eobs
pe +Evib

pe +Eke (11)

where Eobs
pe is the potential energy of the string wrapped around

the obstacle, Evib
pe is the potential energy of the freely vibrating

string, and Eke is the kinetic energy of the string. The total po-
tential energy of the string is equal to the product of the tension
T (which is assumed constant) and elongation of the string [12]
and can be written as

Eobs
pe = T

∫ x̄

0

[√
1+[ f ′(x)]2−1

]
dx

Evib
pe = T

∫ l

x̄

[√
1+[y′(x, t)]2−1

]
dx

≈ T
2

∫ l

x̄

[
y′(x, t)

]2 dx =⇒

(12)

Eobs
pe =

T
2

λ
2A2 sin2

ωt
∫ l

x̄
[cosλx+ tanλl sinλx]2 dx

=
1
8

T λA2 sin2
ωt sec2

λl
{

2λ(l− x̄)+ sin[2λ(l− x̄)]
}

=
1
8

T λsec2
λl
{

2λ(l− x̄)+ sin[2λ(l− x̄)]
}[

g(x̄)
]2 (13)

Eke =
1
2

∫ l

x̄
ρ
[
ẏ(x, t)

]2dx

=
ρ

2
ω

2A2 cos2
ωt

∫ l

x̄
[sinλx− tanλl cosλx]2 dx

=
1

8λ
ρω

2A2 cos2
ωt sec2

λl{
2λ(l− x̄)− sin[2λ(l− x̄)]

}
=

1
8λ

ρω
2 sec2

λl
{

2λ(l− x̄)− sin[2λ(l− x̄)]
}

{
A2−

[
g(x̄)

]2} (14)

From Eqs.(11), (12), (13) and (14) it is easy to verify that the
energy expression has the form

E = w(x̄,A) (15)

For a configuration in which the string is wrapped around the ob-
stacle, the complete solution can be determined from the values
of x̄ and E using the four-step algorithm below:

1. Use Eq.(9) to determine the value of λ. Since Eq.(10) pro-
vides multiple non-trivial solutions that correspond to dif-
ferent modes of vibration, the solution corresponding to the
initial mode of vibration should be chosen - see assumption
A7.

2. Use Eq.(4) to compute ω.
3. Compute A from Eq.(15) using the values of x̄, E, λ and ω.
4. Compute the time t from Eq.(10) by substituting in the val-

ues of x̄, A and λ.

The complete solution can now be described using Eqs.(1) and
(6) as follows:

y(x, t) =
{

f (x) : x ∈ [0, x̄]
A(sinλx− tanλl cosλx) sinωt : x ∈ [x̄, l ] (16)
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Figure 2. SMALL STRING SEGMENT ∆x WRAPS AROUND OBSTA-
CLE AFTER PERFECTLY INELASTIC COLLISION. IN THE MGGNIFIED
IMAGE, AB DENOTES THE SMALL STRING SEGMENT OF LENGTH
∆x THAT WRAPS AROUND OBSTACLE OVER THE REGION AC.

Wrapping of the string

We discuss the method for computing the values of x̄ and E
at regular intervals of time. Let {x̄i,Ei} denote the values of x̄
and E at time t = ti, i = 0,1,2, · · · ,k. We assume t0 = 0. Then,
from assumption A6, x̄0 = 0 and the value of E0 is known. We
will discuss the method for determining the value of tk which
denotes the time after which the string begins to unwrap. Let us
assume that for some i = j, {x̄ j,E j} is known. We outline the
method for computing {x̄ j+1,E j+1} from the values of {x̄ j,E j}.
Choose a small segment of the vibrating string that is expected
to wrap around the obstacle over a small interval of time. Let the
projection of this string segment AB on the x axis be ∆x as shown
in Fig.2. The kinetic energy of this string segment, which will be
lost due to inelastic collision, can be computed from Eq.(6) as

follows

Elost =
ρ

2

∫ x̄ j+∆x

x̄ j

[
ẏ(x, t)

]2dx

=
ρ

2
ω

2
jA

2
j cos2

ω jt j

∫ x̄ j+∆x

x̄ j

[sinλ jx− tanλ jl cosλ jx]
2 dx

(17)

where A j, ω j, λ j and t j denote values of A, ω, λ and t, respec-
tively, derived for the pair {x̄ j,E j}. Using Eq.(17), E j+1 can be
computed as follows

E j+1 = E j−Elost, j = 1,2, · · · ,k−1 (18)

To compute x̄ j+1, j = 1,2, · · · ,k−1, we make the following gen-
eral assumption:

A9. With reference to Fig.2, the potential energy of the vibrat-
ing string segment AB at time t j is equal to the potential
energy of the string segment AC wrapped on the obstacle at
time t j+1.

Using Eqs.(12) and (13) assumption A9 can be mathematically
expressed as follows

∫ x̄ j+1

x̄ j

[√
1+[ f ′(x)]2−1

]
dx =

∫ x̄ j+∆x

x̄ j

[√
1+[y′(x, t)]2−1

]
dx

≈ 1
2

∫ x̄ j+∆x

x̄ j

[
y′(x, t)

]2 dx

=
1
2

λ
2
jA

2
j sin2

ω jt jη(λi,xi) (19)

Where

η(λi,xi) =
∫ x̄ j+∆x

x̄ j

[cosλ jx+ tanλ jl sinλ jx]
2 dx

Equation (20) can be used to determine x̄ j+1. The values of A j+1,
ω j+1, λ j+1 and t j+1 are computed from the values of x̄ j+1 and
E j+1. The iterative process is terminated when the kinetic energy
of the vibrating string segment becomes approximately equal to
zero. At this time, which is denoted as tk, the string stops wrap-
ping and begins to unwrap.

Unwrapping of the string
Similar to wrapping, the geometry of the string during un-

wrapping is computed from the values of x̄ and E. The string
begins to unwrap at t = tk; at this time the values of x̄ = x̄k
and E = Ek are known. Let {x̄i,Ei} denote the values of x̄ and
E at time t = ti, i = k,k + 1,k + 2, · · · , l, where tl denotes the
time when the string has unwrapped completely. We outline the
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Table 1. PERCENTAGE ENERGY LOSS OVER ONE CYCLE OF OS-
CILLATION AND x̄k FOR DIFFERENT VALUES OF E0 AND THREE
MODES OF OSCILLATION, ALL WITH R = 1m.

Mode 1 Mode 2 Mode 3

E0 = 1.00J 0.491%, 0.729 m 1.598%, 0.696 m 2.752%, 0.654 m

E0 = 0.50J 0.256%, 0.596 m 0.861%, 0.569 m 1.547%, 0.537 m

E0 = 0.25J 0.113%, 0.461 m 0.402%, 0.445 m 0.766%, 0.424 m

method for computing {x̄ j+1,E j+1} from the values of {x̄ j,E j}
for k ≤ j ≤ l−1. One chooses a small segment of the string that
is expected to unwrap over a small interval of time. Then we let
the projection of this string segment on the x axis be ∆x. Then,

x̄ j+1 = x̄ j−∆x, j = k,k+1, · · · , l−1 (20)

Since there is no loss of kinetic energy during unwrapping (see
assumption A5), we have

E j+1 = E j, j = k,k+1, · · · , l−1 (21)

The values of A j+1, ω j+1, λ j+1 and t j+1 are computed iteratively
from the values of x̄ j+1 and E j+1. The iterative process is termi-
nated at t = tl when the potential energy of the string is equal to
its value at the mean position.

Numerical Simulations
Consider a string with

T = 1 N, ρ = 0.025 kg/m, l = 4 m (22)

The obstacle is assumed to be a circle of radius R and center
coordinates (x,y)≡ (0,R), i.e.,

y = f (x) = R−
√

R2− x2, 0≤ x≤ R (23)

It can be verified that f (x) in Eq.(23) satisfies the boundary con-
ditions in Eq.(1). For R = 1 m and ∆x = 0.001 m, we compute
the percentage loss of energy over one cycle of string oscillation
for three different values of initial energy E0 and for oscillation
in the first, second, and third modes, respectively. These values
are shown in Table 1 together with the values of x̄k, which is a
measure of the length of wrapping around the obstacle. For the
special case of E0 = 0.5 J, we plot the percentage loss of energy
for three consecutive cycles of string vibration in the first two

Table 2. PERCENTAGE ENERGY LOSS OVER ONE CYCLE OF OS-
CILLATION AND x̄k FOR OBSTACLE OF DIFFERENT SHAPES AND
SIZES, ALL WITH E0 = 0.50J.

Mode 1 Mode 2 Mode 3

Case (a) 0.029%, 0.295 m 0.113%, 0.291 m 0.237%, 0.286 m

Case (b) 0.256%, 0.596 m 0.861%, 0.569 m 1.547%, 0.537 m

Case (c) 0.915%, 0.897 m 2.549%, 0.815 m 3.887%, 0.737 m

Case (d) 0.665%, 0.803 m 2.021%, 0.750 m 3.278%, 0.692 m

modes. These plots are shown in Fig.3. The following obser-
vations can be made from the plots in Figs.3 and data in Table
1:

For any mode of oscillation, it can be seen that the percent-
age energy loss is higher for higher values of E0. This is not
surprising since higher values of E0 results in higher kinetic
energy and greater length of wrapping, as evident from the
values of x̄k in Table 1, and consequently more energy loss
through inelastic collision. The same argument can explain
the reduction in the percentage loss of energy over consecu-
tive cycles of vibration in Fig.3.
The percentage energy loss is higher for higher modes of
oscillation for the same value of E0. This is true for the
same number of cycles (see Fig.3) as well as for the same
length of time and is due to the fact that the velocities of
the string associated with higher frequencies are higher in
higher modes, and as a consequence the loss upon impact
is higher. The value of x̄k is less for the higher modes but
this does not have a significant effect on the percentage of
energy loss.

(a) a circle with R = 0.5 m
(b) a circle with R = 1.0 m
(c) a circle with R = 1.5 m
(d) an ellipse with semi-major and semi-minor axes lengths of

1.2 m and 1.0 m, respectively, and with the major axis
aligned with the x axis

and satisfy the boundary conditions in Eq.(1). The results are
shown in Table 2. It is clear from the results that for circular
obstacles the percentage energy loss increases with increase in
radius and vice versa. This is in agreement with the results ex-
pected for the limiting cases, namely, percentage energy loss is
zero when the radius of the circle is zero and is equal to 100%
when the radius is infinity. The ellipse in case (d) circumscribes
the circle in case (b) and provides a lower slope for the wrapping
curve. A comparison of the data for cases (b) and (d) indicates
that a slight decrease in slope of the obstacle results in signifi-
cantly higher percentage of energy loss.
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Figure 3. PLOT OF PERCENTAGE ENERGY CONTENT OF THE
STRING OVER THREE CONSECUTIVE CYCLES OF VIBRATION IN (a)
MODE 1, AND (b) MODE 2. FOR BOTH CASES, THE INITIAL ENERGY
OF THE STRING WAS E0 = 0.5 J.

Effect of Change in Slope of Obstacle
We consider the obstacle in Fig.4 where the curve y = g(x)

is obtained by rotating the curve y = f (x) in Fig.1 clockwise by
angle θ about point O. To deal with this problem, we modify
assumptions A1 and A6 as follows:

A1. The obstacle is rigid and has the following geometry

y = f (x), y(0) = 0,
[

dy
dx

]
x=0

=− tanθ (24)

A6. At the initial time t = 0, the string has no contact with the
obstacle. It has zero kinetic energy and potential energy
equal to E0. The displacement of the string at the initial time
corresponds to a single mode of free vibration as shown in
Fig.4.

Figure 4. A string vibrating against an obstacle. The obstacle is identical
to the one in Fig.1 but rotated clockwise by angle θ about point O.

The remaining assumptions, A2 through A5 and A6 through A9,
are not changed. In Table 3 we present simulation results for a
string with

T = 1 N, ρ = 0.025 kg/m, l = 4 m, E0 = 0.50 J
(25)

and a circular obstacle of radius R = 1 m. A comparison of
the results indicates that percentage energy loss is significantly
higher for higher values of θ. In our analysis, the string was
assumed to have no damping. As the string wraps around the
obstacle, its effective length decreases and frequency of vibra-
tion increases - this will increase the rate of energy decay which
depends on the product of damping ratio and natural frequency.

Conclusion
The vibration of a string wrapping and unwrapping around

a smooth obstacle was investigated in this paper. Assuming lin-
ear behavior of the string, an analytical model was developed for
computing its geometry at each time step by bookkeeping the
energy. The energy of the string is assumed to dissipate during
wrapping through inelastic collision between the string and the
obstacle but remain conserved during unwrapping. The obstacle
serves as a passive mechanism for damping and its effectiveness
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Table 3. PERCENTAGE ENERGY LOSS OVER ONE CYCLE OF OS-
CILLATION AND x̄k FOR TWO MODES OF OSCILLATION WITH DIF-
FERENT VALUES θ.

θ Mode 1 Mode 2

0 deg 0.256%, 0.596 m 0.113%, 0.291 m

15 deg 1.486%, 0.866 m 3.478%, 0.841 m

30 deg 9.233%, 1.095 m 13.72%, 1.080 m

can be increased by changing its orientation in a manner that re-
sults in greater wrapping. This leads to the possibility of rapid
dissipation of vibration energy through active control of the ori-
entation of the obstacle and extension of the methodology for
active vibration control of soft structures such as thin plates and
membranes.
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