
Boolean Analysis Abdullah Al-Zubydea

1

BOOLEAN ANALYSIS OF LOGIC CIRCUITS
Boolean algebra provides a concise way to express the operation of a logic

circuit formed by a combination of logic gates so that the output can be
determined for various combinations of input values.
Boolean Expression for a Logic Circuit

To derive the Boolean expression for a given logic circuit, begin at the
leftmost inputs and work toward the final output, writing the expression for each
gate. For the example circuit in Fig.(1), the Boolean expression is determined as
follows:

1. The expression for the left-most AND gate with inputs C and D is CD.
2. The output of the left-most AND gate is one of the inputs to the OR gate and B

is the other input. Therefore, the expression for the OR gate is B + CD.
3. The output of the OR gate is one of the inputs to the right-most AND gate and

A is the other input. Therefore, the expression for this AND gate is A(B + CD),
which is the final output expression for the entire circuit.

Fig1 A logic circuit showing the development of the Boolean expression for the output

Constructing a Truth Table for a Logic Circuit
Once the Boolean expression for a given logic circuit has been determined,

a truth table that shows the output for all possible values of the input variables
can be developed. The procedure requires that you evaluate the Boolean
expression for all possible combinations of values for the input variables. In the
case of the circuit in Fig.(2), there are four input variables (A, B, C, and D) and
therefore sixteen (24 = 16) combinations of values are possible.
Evaluating the expression
To evaluate the expression (A(B+CD)),first find the values of the variables that
make the expression equal to 1, using the rules for Boolean addition and
multiplication. In this case the expression equals 1 only if A=1 and
B+CD=1because
A(B+CD)=1.1=1
Now determine when the B+CD term equals 1. The term B+CD =1 if either B=1or
CD=1 or if the both B and CD equals 1because

Boolean Analysis Abdullah Al-Zubydea

2

B+CD = 1+0=1
B+CD = 0+1=1
B+CD = 1+1=1
The term CD =1 only if C=1and D=1.
The summarize, the expression A(B+CD)=1when A =1and B =1 regardless of the
values of C and D or when A=1and C = 1and D =1regardless of the value of B.
the expression A(B+CD)=0 for all other value combinations of variables.
Putting the Results in Truth Table format

The first step is to list the sixteen input variable combinations of 1s and 0s
in a binary sequence as shown in Table 4-5. Next, place a 1 in the output column
for each combination of input variables that was determined in the evaluation.
Finally, place a 0 in the output column for all other combinations of input
variables. These results are shown in the truth table in Table 1.

Boolean Analysis Abdullah Al-Zubydea

3

SIMPLIFICATION USING BOOLEAN ALGEBRA
A simplified Boolean expression uses the fewest gates possible to implement

a given expression.

Ex//
Using Boolean algebra techniques, simplify this expression:

AB + A(B + C) + B(B + C)
Step 1: Apply the distributive law to the second and third terms in the

expression, as follows:
AB + AB + AC + BB + BC

Step 2: Apply rule 7 (BB = B) to the fourth term
AB+AB+AC+B+BC

Step 3: Apply rule 5 (AB + AB = AB) to the first two terms.
AB + AC + B + BC

Step 4: Apply rule 10 (B + BC = B) to the last two terms.
AB+AC+B

Step 5: Apply rule 10 (AB + B = B) to the first and third terms.
B+AC

At this point the expression is simplified as much as possible.

Fig2

Boolean Analysis Abdullah Al-Zubydea

4

EX// simplify the following Boolean expression:
[AB(C+BD)+AB]C

Note that brackets and parentheses mean the same thing: the term inside is
multiplied (ANDed) with the term outside.

Step1: Apply the distributive law to the terms within the brackets.
(ABC+ABBD+ AB)C

Step2: apply rule 8 (BB = 0) to the second term within the parentheses
(ABC+A.0.D+ AB)C

Step3: apply rule3 (A.0.D =0)
(ABC+0+ AB)C

Step4: apply rule1 (drop the 0)
(ABC+ AB)C

Step5: apply the distributive law
ABCC+ ABC

Step6: apply rule 7(CC=C)
ABC+ABC

Step7: Factor out BC
BC(A+A)

Step8: apply rule 6 (A+A =1)
BC

Boolean Analysis Abdullah Al-Zubydea

5

STANDARD FORMS OF BOOLEAN EXPRESSIONS
All Boolean expressions, regardless of their form, can be converted into

either of two standard forms: the sum-of-products form or the product-ofsums
form. Standardization makes the evaluation, simplification, and implementation of
Boolean expressions much more systematic and easier.

A binary variable may appear either in its normal form (x) or in its
complement form (x). Now consider two binary variables x and y combined with
an AND operation. Since each variable may appear in either form, there are four
possible combinations: x y , x y, x y,and x y. Each of these four AND terms is
called a minterm, or a standard product. In a similar manner, n variables can be
combined to form 2n minterms. The 2n different minterms may be determined by a
method similar to the one shown in Table 2 for three variables.

Each minterm is obtained from an AND term of the n variables, with each
variable being primed if the corresponding bit of the binary number is a 0 and
unprimed if a 1. A symbol for each minterm is also shown in the table and is of the
form mj, where the subscript j denotes the decimal equivalent of the binary number
of the minterm designated.

In a similar fashion, n variables forming an OR term, with each variable
being primed or unprimed, provide 2n possible combinations, called maxterms, or
standard sums. The eight maxterms for three variables, together with their
symbolic designations, are listed in Table 2 . Any 2n maxterms for n variables may
be determined similarly. It is important to note that (1) each maxterm is obtained
from an OR term of the n variables, with each variable being unprimed if the
corresponding bit is a 0 and primed if a 1, and (2) each maxterm is the
complement of its corresponding minterm and vice versa.

A Boolean function can be expressed algebraically from a given truth
table by forming a minterm for each combination of the variables that produces
a 1 in the function and then taking the OR of all those terms.

For example, the function f1 in Table 2 is determined by expressing the
combinations 001, 100, and 111 as x y z, x y z, and xyz, respectively. Since each
one of these minterms results in f1 = 1, we have

f1 = x y z + x y z + xyz = m1 + m4 + m7

Boolean Analysis Abdullah Al-Zubydea

6

Table 2, Minterms and Maxterms for Three Binary Variables

X Y Z
Minterms Maxterms

Term Designation Term Designation

0 0 0 X Y Z m0 X+Y+Z M0

0 0 1 X Y Z m1 X+Y+Z M1

0 1 0 X Y Z m2 X+Y+Z M2

0 1 1 X Y Z m3 X+Y+Z M3

1 0 0 X Y Z m4 X+Y+Z M4

1 0 1 X Y Z m5 X+Y+Z M5

1 1 0 X Y Z m6 X+Y+Z M6

1 1 1 X Y Z m7 X+Y+Z M7

Sum of Minterms
The minterms whose sum defines the Boolean function are those which

give the 1's of the function in a truth table.
EX// Express the Boolean function F = A + BC as a sum of minterms. The

function has three variables: A, B, and C.
The first term A is missing two variables; therefore,
A = A(B + B) = AB + AB
This function is still missing one variable, so
A = AB(C + C) + AB(C + C)
= ABC + ABC + ABC + ABC
The second term B_C is missing one variable; hence,
BC = BC(A + A) = ABC + ABC
Combining all terms, we have
F = A + BC
= ABC + ABC+ ABC + ABC + ABC
But AB_C appears twice, and according to theorem 1 (x + x = x), it is

possible to remove one of those occurrences. Rearranging the minterms in
ascending order, we finally obtain

F = ABC + ABC + ABC + ABC + ABC
= m1 + m4 + m5 + m6 + m7

When a Boolean function is in its sum‐of‐minterms form, it is sometimes
convenient to express the function in the following brief notation:

F(A, B, C) = ∑(1, 4, 5, 6, 7)
The summation symbol ∑ stands for the ORing of terms

Boolean Analysis Abdullah Al-Zubydea

7

An alternative procedure for deriving the minterms of a Boolean function
is to obtain the truth table of the function directly from the algebraic expression
and then read the minterms from the truth table.

A B C F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

Product of Maxterms
Each of the 22n functions of n binary variables can be also expressed as a

product of maxterms.
To express a Boolean function as a product of maxterms, it must first be

brought into a form of OR terms. This may be done by using the distributive law,
x + yz = (x + y)(x + z). Then any missing variable x in each OR term is ORed with
x x The procedure is clarified in the following example.
EX//Express the Boolean function F = xy + x z as a product of maxterms.
First, convert the function into OR terms by using the distributive law:

F = xy + xz = (xy + x)(xy + z)
= (x + x)(y + x)(x + z)(y + z)

= (x + y)(x + z)(y + z)
The function has three variables: x, y, and z. Each OR term is missing one
variable; therefore,

x + y = x + y + zz = (x+ y + z)(x+ y + z)
x + z = x + z + yy = (x + y + z)(x + y + z)
y + z = y + z + xx = (x + y + z)(x+ y + z)

Combining all the terms and removing those which appear more than once, we
finally obtain

F = (x + y + z)(x + y + z)(x + y + z)(x + y + z)
= M0 M2 M4 M5

A convenient way to express this function is as follows:
F(x, y, z) = Π(0, 2, 4, 5)

Boolean Analysis Abdullah Al-Zubydea

8

The product symbol, Π, denotes the ANDing of maxterms; the numbers are the
indices of the maxterms of the function
Conversion between Canonical Forms

The complement of a function expressed as the sum of minterms equals the
sum of minterms missing from the original function. This is because the original
function is expressed by those minterms which make the function equal to 1,
whereas its complement is a 1 for those minterms for which the function is a 0. As
an example, consider the function

F(A, B, C) = ∑(1, 4, 5, 6, 7)
This function has a complement that can be expressed as
F (A, B, C) = ∑(0, 2, 3) = m0 + m2 + m3

Now, if we take the complement of F by DeMorgan’s theorem, we obtain F
in a different form:

F = (m0 + m2 + m3) = m0 . m2 . m3 = M0M2M3 = Π(0, 2, 3)
The last conversion follows from the definition of minterms and maxterms

as shown in Table 2 . From the table, it is clear that the following relation holds:
mj = Mj

That is, the maxterm with subscript j is a complement of the minterm with
the same subscript j and vice versa.

