Details of Single Round

Figure below shows the internal structure of a single round. The left and right halves of each 64-bit intermediate value are treated as separate 32-bit quantities, labeled L (left) and R (right). As in any classic Feistel cipher, the overall processing at each round can be summarized in the following formulas:

$$L_i = R_{j-1}$$

$$R_i = L_{i-1} \times F(R_{i-1}, K_i)$$

By Marwa Al-Musawy

1- The round key K is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by using a table that defines a permutation plus an expansion that involves duplication of 16 of the R bits (table 1a (E-table))

32	1	2	3	4	5
4	5	6	7	8	9
8	9	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	30	31	32	1

- 2- The resulting 48 bits are XORed with K.
- 3- This 48-bit result passes through a substitution function that produces a32-bit output, which is permuted as defined by (S-boxes).

The role of the S-boxes in the function F is illustrated in Figure 6a The substitution consists of a set of eight S-boxes, each of which accepts 6- bits as input and produces 4- bits as output. These transformations are as follows:

- A- The first and last bits of the input to box S form a 2-bit binary number to select one of four substitutions defined by the four rows in the table for S*i*.
- B- The middle four bits select one of the sixteen columns.
- C- The decimal value in the cell selected by the row and column is then converted to its 4-bit representation(from S-boxes table) to produce the output.

	34	4	13	1	2	15	11	8	3	10	-0	12	5	.9	0	7
Si.	-0	15	7	4	14	2	13	1	10	6	1.2	11	-9	5	3	8
	-4	1	24	8	13	6	2	11	15	12		7	3	10	5	0
	-15	12	8	2	-4	.9	1	7.	- 5	H.	3	14	10	- 0	- 6	13.
1	15	1	8	14	6	11	3	4	.0	7	2	13	12	0	5	10
	3	13	4	7	15	2	8	14	82	0	1	10	6	.9	11	5
~	0	14	7	11	10	4	1.3	1	5	.8	12	6	9	3	2	15
3	83	5	10	1	3	15	4	2	11	6	7	12	0	5	34	9
1	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
5.	13	7	0	9	3	-4	6	10	2	.8	5	14	12	11	15	
~	13	6	-4	9	8	15	3	0	1.1	1	2	12	5	10	3.4	7
	1	10	13	0	6	.0	- 8	7	-4	15	-14	3	-11	5	2	12
P	7	13	14	3	0	6	- 6	10	1	2	8	5	11	32	4	15
	13		11	5	6	15	0	3	4	7	2	12	1	10	14	
~	10	6	9	0	12	11	.7	1.5	1.5	1	3	14	5	2	8	4
	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
1	2	12	4	1	7	10	11	6		5	3	15	13	0	14	9
8.	34	11	2	32	-4	7	13	1	5	0	15	10	3		8	6
1	-4	2	1	33	3.0	13	7	8	15	.9	12	5	.6	-3	0	14
1	-11	8	12	7	1	14	2	13	6	15	0	9	10	-4	5	3
1	12	1	10	15	9	2	6	8	0	13	3	-4	14	7	5	11
\$.	10	15	-4	2	7	12	.0	5	6	1	13	14	0	11	3	8
1	.9	34	3.5	5	2	- 8	12	3	7	0	-4	10	- E.	1.5	11	6
Į	4	3	2	32	9	5	15	10	11	14	1	7	- 6	0	8	15
	4	11	2	14	15	0	.8	13	3	12	9	7	5	10	6	I.
5.	13	0	11	7	-4	.9	1	10	14	3	5	12	2	1.5	.8	6
11	1	4	11	13	12	3	7	14	30	15	- 6	8	-0	.5	9	2
	-6	11	13	8	- 1	-4	10	7	.9	- 5	0	15	14	2	3	12
1	13	2		4	6	15	11	1.	10	9	3	14	5	0	32	7
5.	1	15	3.3	8	\$15	- 3	7	4	12	5	. 6	11	0	14	9	2
	17	11	-4	- R	.9	12	14	2	0	6	10	13	15	3	5	8

Figure (6a) the s-box

Example:

In S1 for input = 011001,

the row is 01 (row 1) and the column is 1100 (column 12).

The value in row 1, column 12 is 9, so the output is 1001.

S (1100) = S(12) = 9 (base 2) = 1001 (base hex)

4- The 32-bit output from the eight S-boxes is then permuted. The permutation function (p) is :

16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Calculation of F(R, K)

Example:

For single round the input = AAAAAAAAAAAAAAAA (in hex)

K= FF00FF0FF00FF0

Find the output of the round?

By Marwa Al-Musawy

Key Generation:

 64-bit key is used as input to the algorithm. The bits of the key are numbered from 1 through 64, arranged (8x8) array.

		(a)	Input Ke	рy			
1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32
33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48
49	50	51	52	53	54	55	56
57	58	59	60	61	62	63	64

- 2- The key is first sub Every eighth bit is ignored, as indicated by the lack of shading in, so only 56-bit is remain.
- 3- The key is subjected to a permutation governed by a table(b) labeled Permuted Choice One (PC-1).

	(b) Perr	muted Ch	oice One	(PC-1)			
57	49	41	33	25	17	9	
1	58	50	42	34	26	18	
10	2	59	51	43	35	27	
19	11	3	60	52	44	36	
63	55	47	39	31	23	15	
7	62	54	46	38	30	22	
14	6	61	53	45	37	29	1
21	13	5	28	20	12	4	

- 4- The resulting 56-bit key is then treated as two 28-bit quantities, labeled *C*₀ and D₀.
- 5- At each round, *Ci*-1 and *Di*-1 are separately subjected to a circular left shift, or rotation, of 1 or 2 bits, as governed by Table d.

				(0	I) Sc	hedu	le of	Left	Shif	ts						
Round number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Bits rotated	1	1	2	2	2	2	2	2	1	2	2	2	2	2	2	1

6- These shifted values serve as input to the next round. They also serve as input *i*-1 to Permuted Choice Two (c), which produces a 48-bit output that serves as input to the function F(Ri-1, Ki-1).

	(c)	Permute	d Choice	Two (PC-	2)		
14	17	11	24	1	5	з	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	z
41	52	31	37	47	55	30	10
 51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32