FOURIER SERIES

FOURIER SERIES

Mathematicians of the eighteenth century, including Daniel Bernoulli and Leonard Euler, expressed the problem of the vibratory motion of a stretched string through partial differential equations that had no solutions in terms of "elementary functions." Their resolution of this difficulty was to introduce infinite series of sine and cosine functions that satisfied the equations. In the early nineteenth century, Joseph Fourier, while studying the problem of heat flow, developed a cohesive theory of such series. Consequently, they were named after him. Fourier series and Fourier integrals are investigated in this and the next chapter. As you explore the ideas, notice the similarities and differences with the chapters on infinite series and improper integrals.

PERIODIC FUNCTIONS

A function $f(t)$ is said to have a period T or to be periodic with period T if for all t, $f(t+T)=f(t)$, where T is a positive constant. The least value of $T>0$ is called the least period or simply the period of $f(t)$.

EXAMPLE 1. The function $\sin t$ has periods $2 \pi, 4 \pi, 6 \pi, \ldots \ldots \operatorname{since} \sin (t+2 \pi), \sin (t+$ $4 \pi), \sin (t+6 \pi), \ldots$ all equal $\sin t$. However, 2π is the least period or the period of $\sin t$.
EXAMPLE 2. The period of $\sin n x$ or $\cos n t$ where n is a positive integer, is $2 \pi / n$.
EXAMPLE 3. The period of $\tan t$ is π.
EXAMPLE 4. A constant has any positive number as period.
Other examples of periodic functions are shown in the graphs of Figures $1(a),(b)$, and (c) next.

Example1: find the period of $f(x)=\cos x$
Solution: $f(x+2 \pi)=\cos (x+2 \pi)$

$$
\begin{aligned}
& =\cos x \cos 2 \pi-\sin x \sin 2 \pi \\
& =\cos x \\
& =f(x)
\end{aligned}
$$

Hence $\cos x$ is periodic of period 2π
Example 2: find the period of $f(x)=\sin 4 x$.
Solution: $f\left(x+\frac{\pi}{2}\right)=\sin \left(4\left(x+\frac{\pi}{2}\right)\right)$

$$
\begin{aligned}
& =\sin (4 x+2 \pi) \\
& =\sin 4 x \cos 2 \pi-\cos 4 x \sin 2 \pi \\
& =\sin 4 x=f(x)
\end{aligned}
$$

Hence $\sin n x$ is periodic of period $\frac{\pi}{2}$, observe that 2π is also a period of $\sin 4 x$.

Our purpose is to approximate periodic functions by sine and cosine. We define Fourier series of the periodic function $f(x)$ by:

$$
f(x)=a_{o}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Fourier coefficients of $f(x)$,given by the Euler formulas:

$$
\begin{gathered}
a_{o}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
\end{gathered}
$$

Example 3: Find the Fourier series for:

$$
f(x)=\left\{\begin{aligned}
1 & : 0<x<\pi \\
-1 & :-\pi<x<0
\end{aligned}\right.
$$

Solution:

$a_{o}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x=0$
$a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=0$

$$
\begin{aligned}
b_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \\
& =\frac{1}{\pi}\left\{\int_{-\pi}^{0} \sin n x d x+\int_{0}^{\pi} \sin n x d x\right\} \\
& =\frac{1}{\pi}\left\{\left.\frac{\cos n x}{n}\right|_{-\pi} ^{0}-\left.\frac{\cos n x}{n}\right|_{0} ^{\pi}\right\} \\
& =\frac{1}{\pi}\left\{\left(\frac{1}{n}-\frac{\cos n \pi}{n}\right)-\left(\frac{\cos n \pi}{n}-\frac{1}{n}\right)\right\} \\
& =\frac{1}{\pi}\left\{\frac{2}{n}-\frac{2 \cos n \pi}{n}\right\} \\
& =\frac{2}{n \pi}\left[1-(-1)^{n}\right]= \begin{cases}0 & : n \text { is even } \\
\frac{4}{n \pi} & : n \text { is odd }\end{cases}
\end{aligned}
$$

Now Fourier series:

$$
\begin{aligned}
& f(x)=\overbrace{a_{o}}^{0}+\sum_{n=1}^{\infty}(\overbrace{a_{n} \cos n x}^{0}+b_{n} \sin n x) \\
& f(x)=\sum_{n=1}^{\infty} \frac{4}{(2 n-1) \pi} \sin (2 n-1) x
\end{aligned}
$$

Then we notice:

- $\int_{-\pi}^{\pi} \sin n x \sin m x \quad d x= \begin{cases}0, & n \neq m \\ \pi, & n=m\end{cases}$
- $\int_{-\pi}^{\pi} \sin n x \cos m x d x=0$ always
- $\int_{-\pi}^{\pi} \cos n x \cos m x d x= \begin{cases}0, & n \neq m \\ \pi, & n=m\end{cases}$

Functions of Any Period $p=2 \mathrm{~L}$

In general:

$$
\begin{gathered}
f(x)=a_{o}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right) \\
a_{o}=\frac{1}{2 l} \int_{-l}^{l} f(x) d x \\
a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n \pi x}{l} d x \\
b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n \pi x}{l} d x
\end{gathered}
$$

Where period, $p=2 l$

Example 4: Find the Fourier series for:

$$
f(x)=x^{2}, \quad-1<x<1
$$

Solution:

In this example, $p=2($ period $=2)$

In this case when $p=2 L$

Thus in our example $L=1$
$a_{o}=\frac{1}{2} \int_{-1}^{1} x^{2} d x=\frac{1}{3}$
$a_{n}=\frac{1}{1} \int_{-1}^{1} x^{2} \cos n \pi x d x$

By Integration by parts:

$$
\begin{aligned}
& =\left.\frac{2 x \cos n \pi x}{n^{2} \pi^{2}}\right|_{-1} ^{1} \\
& =\frac{4(-1)^{n}}{n^{2} \pi^{2}}
\end{aligned}
$$

$b_{n}=\frac{1}{1} \int_{-1}^{1} \overbrace{x^{2}}^{\text {even }} \underbrace{\sin n \pi x}_{\text {odd }} d x=0$

So,
$f(x)=\frac{1}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2} \pi^{2}} \cos (n \pi x)$

Fourier Cosine Series

If $f(x)$ is an even function, $(f(-x)=f(x))$, then there will not be any sine terms in the Fourier series for $f(x)$. The Fourier sine coefficient is:

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
$$

Since $f(x)$ is an even function and $\sin (n x)$ is odd, $f(x) \sin (n x)$ is odd. b_{n} is the integral of an odd function from $-\pi$ to π and is thus zero. We can rewrite the cosine coefficients,

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x
\end{aligned}
$$

Example 5: Consider the function defined on $[0, \pi)$ by

$$
f(x)=\left\{\begin{array}{lll}
x & \text { for } & 0 \leq x<\pi / 2 \\
\pi-x & \text { for } & \pi / 2 \leq x<\pi
\end{array}\right.
$$

The Fourier cosine coefficients for this function are:

$$
\begin{aligned}
a_{n} & =\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} x \cos n x d x+\frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi}(\pi-x) \cos n x d x \\
& =\left\{\begin{array}{cc}
0 & n-\text { odd and } n-2,6,10, \ldots \\
\frac{-8}{n^{2} \pi} & n-4,8,12, \ldots
\end{array}\right.
\end{aligned}
$$

In Figure 2 the Fourier cosine series are plotted.

Figure 2: Fourier Cosine Series.

Fourier Sine Series

If $f(x)$ is an odd function, $(f(-x)=-f(x))$, then there will not be any cosine terms in the Fourier series. Since $f(x) \cos (n x)$ is an odd function, the cosine coefficients will be zero. Since $f(x) \sin (n x)$ is an even function, we can rewrite the sine coefficients

$$
b_{n}=\frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x
$$

Example 6: Consider the function defined on $[0, \pi)$ by

$$
f(x)=\left\{\begin{array}{lll}
x & \text { for } & 0 \leq x<\pi / 2 \\
\pi-x & \text { for } & \pi / 2 \leq x<\pi
\end{array}\right.
$$

The Fourier sine coefficients for this function are:
$b_{n}=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} x \sin n x d x+\frac{2}{\pi} \int_{\frac{\pi}{2}}^{\pi}(\pi-x) \sin n x d x$

$$
=\frac{16}{\pi n^{2}} \cos \left(\frac{n \pi}{4}\right) \sin ^{3}\left(\frac{n \pi}{4}\right)
$$

In Figure 3 the Fourier sine series are plotted.

Figure 3: Fourier sine Series.

Example 7: Find the Fourier series for:

$$
f(x)=|x|, \quad-\pi<x<\pi
$$

Solution:

$a_{o}=\frac{1}{\pi} \int_{-\pi}^{\pi}|x|=\frac{2}{\pi} \int_{0}^{\pi} x d x=\pi$
$a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x$

$$
\begin{aligned}
& =\frac{2}{\pi}\left(\left[\frac{x \sin n x}{n}\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{\sin n x}{n} d x\right)=\frac{2}{\pi}\left[\frac{\cos n x}{n^{2}}\right]_{0}^{\pi} \\
& =\frac{2(-1)^{n}}{\pi n^{2}}-\frac{2}{\pi n^{2}}=\frac{\left(2(-1)^{n}-1\right)}{\pi n^{2}}
\end{aligned}
$$

$b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}|x| \sin n x d x=\frac{1}{\pi} \int_{-\pi}^{0} x \sin n x d x+\frac{1}{\pi} \int_{0}^{\pi} x \sin n x d x$

$$
=\frac{1}{\pi}\left[\left[\frac{x \cos n x}{n}\right]_{-\pi}^{0}-\int_{-\pi}^{0} \frac{\cos n x}{n} d x\right]+\frac{1}{\pi}\left[\left[\frac{-x \cos n x}{n}\right]_{0}^{\pi}+\int_{0}^{\pi} \frac{\cos n x}{n} d x\right]
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left[\frac{\pi(-1)^{n}}{n}-\left[\frac{\sin n x}{n^{2}}\right]_{-\pi}^{0}\right]+\frac{1}{\pi}\left[\frac{-\pi(-1)^{n}}{n}+\left[\frac{\sin n x}{n^{2}}\right]_{0}^{\pi}\right] \\
& =\frac{1}{\pi} \frac{\pi(-1)^{n}}{n}+\frac{1}{\pi} \frac{-\pi(-1)^{n}}{n}=0
\end{aligned}
$$

So on the interval $[-\pi, \pi]$, our function is:

$$
\begin{aligned}
|x| & =\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{2\left((-1)^{n}-1\right)}{\pi n^{2}} \cos n x \\
& =\frac{\pi}{2}-\frac{4}{\pi}\left(\cos x+\frac{1}{9} \cos 3 x+\frac{1}{25} \cos 5 x+\cdots\right)
\end{aligned}
$$

