

Subject : Laser Applications Units: 6 Weekly Hours : Theoretical : 2 Experimental: 2

week	Syllabus
1	Introduction
2-10	 Material & Laser Parameters Material Parameters Laser Parameters Beam Transport Beam Focusing Controlling the beam after it is emitted out of the optical cavity Beam Expander Applications of Lasers with Beam Expanders Types of Beam Delivery System Optical Processes Energy Balance Approximation
11-20	 Industrial Applications Laser Drilling Laser Cutting Laser Welding Materials –Processing Applications Surface Hardening Re-melting (Glazing) Alloying Cladding Annealing Micromaching Laser marking Laser Scribing

- Metrological & Scientific Applications
- Scatter Measurement
- Optical Alignment
- Applications of Lasers in Chemistry
- Pollution Detection
- Laser Doppler Velocimeter
- Digital Optical Storage of Information
- Laser Spectroscopy
- Free Space Optical Communications
- Optical computer.
- Laser Depth Sounder.

21-30 • Laser Printer.

- Ring Laser Gyroscope
- Interaction between Laser Radiation and Biological Tissue
- The effects of the laser beam on the biological tissue
- Military Applications
- Laser Range-finder
- Detecting the Laser signal
- Classification of Laser Range Finders
- Laser Tracking Systems
- Laser Target Designator
- Laser weapons ("Star War")
- Laser blinding for man and sensitive equipment.

Subject : Advanced laser systems Units: 6 Weekly Hours : Theoretical : 2 Experimental: 2

week	Syllabus
1	Introduction
2-10	 Operation of practical Lasers The Laser: Background The Active Medium. Lasing thresholds Types of energy levels in lasers. Level Lifetime. The Pump Source The Optical Cavity. Population Inversion in Lasing Mediums. Operational Modes of Lasers. Continuous mode of operation. Pulsed mode of operation. Output Parameters Laser power and Laser energy. Laser efficiency. Operating Wavelengths. Classification of Lasers
11-20	 Gas Lasers Excitation of Gas Laser by Electrical Discharge. Excitation of Laser by Optical Pumping . Atomic Gas Lasers (Neutral Gas Lasers) He-Ne Lasers. The Copper Vapor Laser . Ion Lasers The Argon ion Laser He-Cd Laser.

	• The Krypton Laser.
	• Molecular Gas Laser .
	• The Carbon Dioxide Laser .
	The Carbon Monoxide Laser.
	• The Nitrogen Laser .
	• The Excimer Laser .
	• The Chemical Laser .
	• Far Infra- Red Laser (FIR)
	Solid State Insulator Laser
	• Structure of the Active Medium in Solid State Laser.
	Pumping Methods
	Optically Pumped Solid State Lasers
	Arrangement of Pump and Laser rod
	Diode Pumped solid state Lasers.
	• Fresnel Losses.
	• The Ruby Laser(Cr ³ t :AL2O3)
21.20	• The Nd:YAG Lasers
21-30	• The Nd : glass Laser
	Alexandrite Laser(Cr3t:BeAL2O4)
	Color or F Center Laser
	Titanium Sapphire Laser
	Semiconductor Lasers
	Energy Bands in Semiconductors
	Laser Action in A semiconductor Laser
	Diode Lasers
	• The Difference between Diode Laser and LED
	• Dye Lasers
	Special Lasers
	• Free Electron Laser(FEL)
	• X-Ray Laser
	Fiber Laser
	Gamma- Ray Laser
	Mid- Infrared Advanced Chemical Laser (MIRACL).

Subject : Optical Communication systems Units: 4 Weekly Hours : Theoretical : 2 Experimental: -

week **Syllabus** 1 Introduction Optical Fiber : Structures and wave guiding Fundamentals • Nature of Light • Optical Fiber modes and configurations • Mode Theory for circular waveguides ٠ • Graded-Index Fiber structure 2-10 Signal Degradation in optical Fiber. • Fiber Material and Fabrication Methods • Attenuation • Signal Distortion in Optical Waveguide • **Optical Sources** ٠ Light Emitting Diodes (LED's) • • Laser Diodes (LD Power Launching and Coupling 11-20 Source -- to- Fiber Power Launching ۲ Fiber-to- FIBER Joints • Photodetectors. PIN Photodiode. •

	ADD Photodiode
21-30	 Optical Receiver Operation Fundamental Receiver Operation. Digital Receiver Performance Calculation. Analogue Receiver. Transmission Link Analyses Point -to- Point Links Wavelength Division Multiplexing (WDM) Line Coding

Subject : Digital Signal Process DSP Units: 4 Weekly Hours : Theoretical : 2 Experimental: –

week	Syllabus
1	Introduction
2-10	Continuous and discrete signals and systemsConvolution
11-20	 Fourier analysis continuous signals and system Discrete Fourier transform (DFT), Fast Fourier transform (FFT).
21-30	 Fast Fourier transforms (FFT). The Laplace transform and the z-transform, solution of difference equations. Feedback system Signal processing, filtering

Subject : Optoelectronics and Light modulation Units: 6 Weekly Hours : Theoretical : 4

Experimental: -

week	Syllabus
1	Introduction
2-10	 Remote sensing elements Energy source or illumination Radiation and atmosphere Interaction with target Recording of energy by the sensor Transmission , Reception ,and processing Interpretation and Analysis Application The electromagnetic spectrums used in remote sensing Ultraviolet or UV Spectrum Visible spectrum Infrared spectrum Microwaves spectrum . Interaction with Atmosphere Scattering Absorption Remote sensing system Passive remote sensing Active remote sensing

r	
	Platforms of recording energy by sensors
	Ground-based sensors
	Aerial platforms
	• Space- based sensors
	Satellite characteristics
	Resolution
	Spatial resolution
	Spectral resolution
11.20	Radiometric resolution
11-20	Temporal resolution
	Multi spectral scanning
	Scanning systems
	• IFOV
	• Across – track scanning
	• Along – track scanning
	• Thermal imaging
	• Weather satellites and sensors
	• GOES
	Retardation and Birefringence
	Electro-Optic Effect And Pockls Cell And Optical Activity
	Materials Kerr Modulation And Optical Frequency Kerr Effect
	Scanning and Switching
	Magneto- Optic Device And Faraday Effect
21.20	Acousto- Optic Effect
21-30	Raman-Nath Regime
	Bragg Regime
	Non Linear Optics
	Harmonic Generation
	Parametric Oscillation

Subject : Laser Design Units: 4 Weekly Hours : Theoretical : 2 Experimental: –

week	Syllabus
1	Introduction
2-10	 Gas laser Power supplies for continuous-wave gas lasers Electrical Characteristics of Gas Discharges Power Supplies for Helium-Neon Lasers Switching Elements Carbon Dioxide Laser Power Supplies Flash lamps For Pulsed Lasers and Flash lamp Power Supplies Electrical Characteristics of Flash lamps Triggering Power Supplies for Flash lamps Charging Power Supply Control of Pulse Shape Optical Characteristics Mechanical Characteristics Cooling for Flash lamps Failure Mechanisms and Lifetime Selection of Flash lamps Maintenance and Care
11-20	 DIODE LASER POWER SUPPLIES Description of Laser Diodes Semiconductor Laser Materials

	 Structures of Laser Diodes Laser Diode Damage and Lifetime Mounting and Cooling of Laser Diodes
	Power Supplies for Laser Diodes
21-30	 PULSED SOLID-STATE LASER Pulsed Solid-State Laser Components Laser Rod Optical Pumping System Optical Cavity Cooling System Output Characteristics Of Pulsed Solid-State Lasers Active resonators Resonators sensitivity Mode selection technique Resonators configuration used in the generation of TEM00mode output Large radius mirror configuration Resonators with internal beam focusing Unstable resonator

Subject : Solid State Units: 4 Weekly Hours : Theoretical : 2 Experimental: –

week	Syllabus
1	Introduction
2-10	 Photons The photoelectric Effect Compton Scattering Energy Quantization in Atoms The De Broglie Hypothesis Electron Interference and Diffraction Sate Functions Operators Corollary 1 Corollary 2 Commutation relation
11-20	 Uncertainty Principle Eigen Value and Eigen Function The Schrödinger Equation Three-dimensional Time Dependent Schrödinger Eq. for free particle Time Dependent Schrödinger Eq. for a particle in a field Hamiltonian Operator Physical Interpretation of Ψ and the probability current density The General Solution of the One-dimensional Schrödinger Equation for a Free

	• Particle
	Time Independents One-dimensional Schrödinger Equation
	Particle in a One-Dimension Box
	Partials in infinite well
	• The concept to of parity
	Partials in finite well
	Particles at Potential Step
	• Particles At A Barrier and The Quantum Mechanical Tunnelling Effect
	The harmonic oscillators
	Dirac's notation
	Heisenberg's equation of motion
	• The harmonic oscillator based on Heisenberg's formalism of quantum
	mechanics
	• Photons
21-30	Quantization of free electromagnetic wave
	Black Body Radiation
	Quantum theory of coherent optical states
	The Hamiltonian of the hydrogen atom
	Angular momentum of the hydrogen atom
	Structure of the hydrogen atom
	• Electron spin and the theory of generalized