1. Velocities in Slider Crank Mechanism

The slider A, in Fig. $1(a)$, is attached to the connecting $\operatorname{rod} A B . v_{\mathrm{B}}$ is known in magnitude and direction. The slider reciprocates along the line of stroke $A O$. The velocity of the slider A (i.e. v_{A}) may be determined by follow:

(a) Slider crank mechanism.

(b) Velocity diagram.

Fig. 1

1. From any point o, draw vector $o b$ parallel to the direction of v_{B} (or perpendicular to $O B$) such that $o b=v_{\mathrm{B}}=\omega \cdot r$, to some suitable scale, as shown in Fig. 1(b).
2. Draw vector $b a$ perpendicular to $A B$ to represent the velocity of A with respect to B i.e. v_{AB}.
3. From point o, draw vector $o a$ parallel to the path of motion of the slider A (which is along $A O$ only). The vectors $b a$ and $o a$ intersect at a. Now $o a$ represents the velocity of the slider A i.e. v_{A}, to the scale.
4. To find velocity of point $E \quad \frac{b e}{B E}=\frac{b a}{B A} \quad$ and then find point e in Fig. $1(b)$ and then v_{E}.

$$
\left.\omega_{\mathrm{AB}}=\frac{v_{B A}}{A B}=\frac{a b}{A B} \quad \quad \text { (Anticlockwise about } A\right)
$$

The angular velocity of the sliding member is zero.

2. Rubbing Velocity at a Pin Joint

Consider two links $O A$ and $O B$ connected by a pin joint at O as shown in Fig. 2.

Let $\quad \omega_{1}=$ Angular velocity of the link $O A$ or the angular velocity of the point A with respect to O.
$\omega_{2}=$ Angular velocity of the link $O B$,
$r=$ Radius of the pin.

Fig. 2 . Links connected by pin joints.

Rubbing velocity at the pin joint O
$=\left(\omega_{1}-\omega_{2}\right) r$, if the links move in the same direction
$=\left(\omega_{1}+\omega_{2}\right) r$, if the links move in the opposite direction

Example: 1

In a four bar chain $A B C D, A D$ is fixed and is 150 mm long. The crank $A B$ is 40 mm long and rotates at 120 r.p.m. clockwise, while the link $C D=80 \mathrm{~mm}$ oscillates about $D . B C$ and $A D$ are of equal length. Find the angular velocity of link $C D$ when angle $B A D=60^{\circ}$.

Solution

(a) Space diagram (All dimensions in mm).

(b) Velocity diagram.

1. Draw the mechanism as shown in Fig. (a) by take suitable scale, let $20 \mathrm{~mm}=1 \mathrm{~cm}$ in paper
2. Find $v_{\mathrm{BA}}=v_{\mathrm{B}}=\omega_{\mathrm{BA}} \times A B$

$$
\begin{aligned}
& N_{\mathrm{BA}}=120 \text { r.p. } \mathrm{m} ., \omega_{\mathrm{BA}}=2 \pi \times 120 / 60=12.568 \mathrm{rad} / \mathrm{s} \\
& v_{\mathrm{B}}=12.568 \times 40=503 \mathrm{~mm} / \mathrm{s}
\end{aligned}
$$

3. Draw the velocity diagram as shown in Fig. (b) by take suitable scale, let $503 \mathrm{~mm} / \mathrm{s}=4 \mathrm{~cm}$ in paper
4. From point a, d draw line $a b=4 \mathrm{~cm} \perp \operatorname{link} A B$ (vector $a b=v_{\mathrm{B}}$), Fig. (b).
5. From point b draw line $b c \perp \operatorname{link} B C$.
6. From point a, d draw line $d c \perp \operatorname{link} D C$ intersecting the line $b c$ at c.
7. Measure $d c$ from Fig. (b)

$$
\begin{gathered}
d c=3 \mathrm{~cm} \text { in paper, } v_{\mathrm{CD}}=v_{\mathrm{C}}=\text { vector } d c \\
v_{\mathrm{C}}=3 \times \frac{503}{4}=378 \mathrm{~mm} / \mathrm{s}
\end{gathered}
$$

We know that $C D=80 \mathrm{~mm}$
\therefore Angular velocity of link $C D, \quad \omega_{\mathrm{CD}}=\frac{v_{C D}}{D C}=\frac{378}{80}=4.72 \mathrm{rad} / \mathrm{s}$
(clockwise about D) Ans.

Example: 2

The mechanism, as shown in Figure below, has the dimensions of various links as follows :
$A B=D E=150 \mathrm{~mm} ; B C=C D=450 \mathrm{~mm} ; E F=375 \mathrm{~mm}$.
The crank $A B$ makes an angle of 45° with the horizontal and rotates about A in the clockwise direction at a uniform speed of 120 r.p.m. The lever $D C$ oscillates about the fixed point D, which is connected to $A B$ by the coupler $B C$. The block F moves in the horizontal guides, being driven by the link $E F$. Determine:

1. velocity of the block F,
2. angular velocity of $D C$, and
3. rubbing speed at the pin C which is 50 mm in diameter.

Solution:

(a) Mechansim

(b) Velocity diagram.

1. Draw the mechanism, to some suitable scale, as shown in Fig.(a). let $100 \mathrm{~mm}=1 \mathrm{~cm}$ in paper
2. Find $v_{\mathrm{BA}}=v_{\mathrm{B}}=\omega_{\mathrm{BA}} \times A B$
$N_{\mathrm{BA}}=120 \mathrm{r} . \mathrm{p} . \mathrm{m} ., \omega_{\mathrm{BA}}=2 \pi \times 120 / 60=12.568 \mathrm{rad} / \mathrm{s}$
$v_{\mathrm{BA}}=v_{\mathrm{B}}=12.568 \times 150=1.885 \mathrm{~m} / \mathrm{s}$
3. Draw the velocity diagram, as shown in Fig. (b), since the points A and D are fixed. Now from point a, draw vector $a b \perp A B$, to some suitable scale.
let $1.885 \mathrm{~m} / \mathrm{s}=3 \mathrm{~cm}$ in paper
vector $a b=v_{\mathrm{B}}$
4. From point b draw vector $b c \perp B C$ to represent v_{CB}, and from point d, draw vector $d c \perp D C$ to represent $v_{\mathrm{CD}}=v_{\mathrm{C}}$. The vectors $b c$ and $d c$ intersect at c.
5. Since the point E lies on $D C$,

$$
\frac{d c}{D C}=\frac{d e}{D E}
$$

From Fig. (b) measure $d c=3.6 \mathrm{~cm}$ in paper

$$
d e=3.6 \times \frac{150}{450}=1.2 \mathrm{~cm}
$$

6. From point e, draw vector $e f \perp E F$ to represent v_{FE}, and from point d draw vector $d f / /$ to the path of motion of F, which is horizontal, to represent v_{F}. The vectors ef and $d f$ intersect at f.
From Fig. (b) measure $d f=1.1 \mathrm{~cm}$ in paper

$$
v_{\mathrm{F}}=\text { vector } d f=1.1 \times \frac{1.885}{3}=0.7 \mathrm{~m} / \mathrm{s} \quad \text { Ans. }
$$

7. $v_{\mathrm{CD}}=$ vector $d c=3.6 \times \frac{1.885}{3}=2.26 \mathrm{~m} / \mathrm{s}$

$$
\omega_{\mathrm{DC}}=\frac{v_{C D}}{D C}=\frac{2.26}{0.45}=5 \mathrm{rad} / \mathrm{s} \quad \ldots . .(\text { Anticlockwise about } D) \quad \text { Ans. }
$$

8. From velocity diagram, we find that v_{CB},

By measurement $b c=3.6 \mathrm{~cm}$ in paper

$$
\begin{gathered}
v_{\mathrm{CB}}=\text { vector } b c=3.6 \times \frac{1.885}{3}=2.26 \mathrm{~m} / \mathrm{s} \\
\omega_{\mathrm{CB}}=\frac{v_{C B}}{B C}=\frac{2.26}{0.45}=5 \mathrm{rad} / \mathrm{s} \quad \ldots . .(\text { Anticlockwise about } B)
\end{gathered}
$$

We know that rubbing speed at the pin C

$$
=\left(\omega_{\mathrm{CB}}-\omega_{\mathrm{CD}}\right) r_{\mathrm{C}}=(5-5) 0.025=0 \quad \text { Ans. }
$$

Home work

In a mechanism shown in Figure below, the crank $O A$ is 100 mm long and rotates clockwise about O at 120 r. p.m. The connecting rod $A B$ is 400 mm long.

At a point C on $A B, 150 \mathrm{~mm}$ from A, the $\operatorname{rod} C E 350 \mathrm{~mm}$ long is attached. This rod $C E$ slides in a slot in a trunnion at D. The end E is connected by a link $E F, 300 \mathrm{~mm}$ long to the horizontally moving slider F.

For the mechanism in the position shown, find 1. velocity of F, 2. velocity of sliding of $C E$ in the trunnion, and 3. angular velocity of $C E$.

Answers

1. $v_{\mathrm{f}}=0.53 \mathrm{~m} / \mathrm{s}$.
2. Velocity of sliding of $C E$ in the trunnion $=v_{\mathrm{D}}=1.08 \mathrm{~m} / \mathrm{s}$.
3. $\omega_{\mathrm{CE}}=1.26 \mathrm{rad} / \mathrm{s}$.
