Acceleration Diagram

In this lecture we shall discuss the acceleration of points in the mechanisms. The acceleration analysis plays a very important role in the development of machines and mechanisms.

1. Acceleration Diagram for a Link

Consider two points A and B on a rigid link as shown in Fig. 1 (a). Let the point B moves with respect to A, with an angular velocity of $\omega \mathrm{rad} / \mathrm{s}$ and let $\alpha \mathrm{rad} / \mathrm{s}^{2}$ be the angular acceleration of the link $A B$.

(a) Link.

(b) Acceleration diagram.

Fig.1. Acceleration for a link.

The radial component of the acceleration of B with respect to A,

$$
a_{\mathrm{BA}}^{r}=\omega^{2} \times A B=\frac{v_{B A}^{2}}{A B}
$$

Radial component of acceleration $a^{r}{ }_{\mathrm{BA}} \perp \nu_{\mathrm{BA}}$, In other words, $a_{\mathrm{BA}}^{r} / / \operatorname{link} A B$.
The tangential component of the acceleration of B with respect to A,

$$
a_{\mathrm{BA}}^{t}=\alpha \times A B
$$

This tangential component of acceleration $/ / \nu_{\mathrm{BA}}$. In other words, $a_{\mathrm{BA}}^{t} \perp \operatorname{link} A B$.

$$
a_{\mathrm{BA}}=a_{\mathrm{BA}}^{r}+a_{\mathrm{BA}}^{t}
$$

(direction sum)
i. e. $\quad a_{\mathrm{BA}}=\sqrt{a_{\mathrm{BA}}^{t 2}+a_{\mathrm{BA}}^{r 2}}$

2. Acceleration of a Point on a Link

Consider two points A and B on the rigid link, as shown in Fig. 2 (a). Let the acceleration of the point A i.e. a_{A} is known in magnitude and direction and the direction of path of B is given. The acceleration of the point B is determined in magnitude and direction by drawing the acceleration diagram as discussed below.

Fig. 2. Acceleration of a point on a link.

1. From any point o^{\prime}, draw vector $o^{\prime} a^{\prime}$ parallel to the direction of absolute acceleration at point A i.e. a_{A}, to some suitable scale, as shown in Fig. 2 (b).
2. The acceleration of B with respect to A i.e. a_{BA} has two components $a_{\text {BA }}^{r}$ and a_{BA}^{t}. These two components are mutually perpendicular.
3. Draw vector $a^{\prime} x / / \operatorname{link} A B$, vector $a^{\prime} x=a^{r}{ }_{B A}=\frac{v_{B A}^{2}}{A B}$
4. From point x, draw vector $x b^{\prime} \perp$ link $A B$ or vector $a^{\prime} x$ (because $a_{\mathrm{BA}}^{t} \perp a_{\mathrm{BA}}^{r}$) and through o^{\prime} draw a line parallel to the path of B to represent the absolute acceleration of B i.e. a_{B}. The vectors $x b^{\prime}$ and $o^{\prime} b^{\prime}$ intersect at b^{\prime}. Now the values of a_{B} and a_{BA}^{t} may be measured, to the scale.
5. By joining the points a^{\prime} and b^{\prime} we may determine the total acceleration of B with respect to A i.e. a_{BA}. The vector $a^{\prime} b^{\prime}$ is known as acceleration image of the link $A B$.
6. For any other point C on the link, draw triangle $a^{\prime} b^{\prime} c^{\prime}$ similar to triangle $A B C$.

$$
\text { vector } b \dot{b} \dot{c}=a_{\mathrm{CB}}, \quad \text { and } \quad \text { vector } a^{\prime} c^{\prime}=a_{\mathrm{CA}} .
$$

a_{CB} and a_{CA} will each have two components as follows :
i. $\quad a_{\mathrm{CB}}$ has two components; $a^{r}{ }_{\mathrm{CB}}$ and a_{CB}^{t} as shown by triangle $b^{\prime} z c^{\prime}$ in Fig. 2 (b), in which $b^{\prime} z / / B C$ and $z c^{\prime} \perp b^{\prime} z$ or $B C$.
ii. $\quad a_{\mathrm{CA}}$ has two components; $a^{r}{ }_{\mathrm{CA}}$ and a_{CA}^{t} as shown by triangle $a^{\prime} y c^{\prime}$ in Fig. 2 (b), in which $a^{\prime} y / / A C$ and $y c^{\prime} \perp a^{\prime} y$ or $A C$.
7. Angular acceleration of the link $A B$,

$$
\alpha_{A B}=\frac{a_{B A}^{t}}{A B}
$$

3. Acceleration in the Slider Crank Mechanism

A slider crank mechanism is shown in Fig. 3 (a). Let the crank $O B$ makes an angle θ with horizontal and rotates in a clockwise direction about the fixed point O with uniform angular velocity $\omega_{\text {BO }} \mathrm{rad} / \mathrm{s}$.

$$
v_{\mathrm{BO}}=v_{\mathrm{B}}=\omega_{\mathrm{BO}} \times O B
$$

Radial acceleration of B (because O is a fixed point),

$$
a_{\mathrm{BO}}^{r}=a_{\mathrm{B}}=\omega_{\mathrm{BO}}^{2} \times O B=\frac{v_{\mathrm{BO}}^{2}}{O B}
$$

Note: A point at the end of a link which moves with constant angular velocity has no tangential component of acceleration, $a_{\mathrm{BO}}^{t}=0$.

The acceleration diagram, as shown in Fig. 3(b), may now be drawn as discussed below:

1. Draw vector $o^{\prime} b^{\prime} / / B O$ represent $a^{r}{ }_{\text {во }}=a_{\mathrm{B}}$, to some suitable scale.
2. From point b^{\prime}, draw vector $b^{\prime} x / / B A$,

$$
\text { vector } b^{\prime} x=a_{\mathrm{BA}}^{r}=\frac{v_{B A}^{2}}{A B}
$$

(a) Slider crank mechanism.

(b) Acceleration diagram.

Fig. 3. Acceleration in the slider crank mechanism.
3. From point x, draw vector $x a^{\prime} \perp b^{\prime} x$ (or $A B$). The vector $x a^{\prime}$ represents a_{AB}^{t}.
4. From o^{\prime}, draw $o^{\prime} a^{\prime} / / A O$, intersecting the vector $x a^{\prime}$ at a^{\prime}.

Now the acceleration of the piston or the slider $A\left(a_{\mathrm{A}}\right)$ and a_{AB}^{t} may be measured to the scale.
5.

$$
a_{\mathrm{AB}}=\text { vector } b^{\prime} a^{\prime}=b^{\prime} x+x a^{\prime}
$$

(vectors sum)
6. The acceleration of any other point on $A B$ such as E can be obtained by

$$
\frac{a^{\prime} b^{\prime}}{A B}=\frac{a^{\prime} e^{\prime}}{A E}
$$

7. Angular acceleration of the connecting $\operatorname{rod} A B$,

$$
\alpha_{A B}=\frac{a_{A B}^{t}}{A B}
$$

Example: 1

The crank of a slider crank mechanism rotates clockwise at a constant speed of 300 r.p.m. The crank is 150 mm and the connecting rod is 600 mm long.
Determine :

1. linear velocity and acceleration of the midpoint of the connecting rod, and
2. angular velocity and angular acceleration of the connecting rod, at a crank angle of 45° from inner dead centre position.

Solution:

1. Draw the mechanism, to some suitable scale, as shown in Fig.(a). let $100 \mathrm{~mm}=1 \mathrm{~cm}$ in paper
2. Find $v_{\mathrm{BO}}=v_{\mathrm{B}}=\omega_{\mathrm{BO}} \times O B$
$N_{\mathrm{OB}}=300 \mathrm{r} . \mathrm{p} . \mathrm{m} ., \omega_{\mathrm{BA}}=2 \pi \times 300 / 60=31.42 \mathrm{rad} / \mathrm{s}$ $v_{\mathrm{BO}}=\nu_{\mathrm{B}}=31.42 \times 150=4.713 \mathrm{~m} / \mathrm{s}$

3. Draw the velocity diagram, as shown in Fig. (b), since the point O is fixed. Now from point o, draw vector $o b \perp O B$, to some suitable scale.
let $4.713 \mathrm{~m} / \mathrm{s}=5 \mathrm{~cm}$ in paper
vector $o b=v_{B}$
4. From point b draw vector $b a \perp B A$ to represent v_{AB}, and from point o, draw vector oa parallel to the motion of A (which is along $A O$) to represent v_{A}. The vectors $b a$ and $o a$ intersect at a.
By measurement, we find that

$$
v_{\mathrm{AB}}=\text { vector } a b=3.6 \times \frac{4.713}{5}=3.4 \mathrm{~m} / \mathrm{s}
$$

Angular velocity of the connecting rod $=\omega_{\mathrm{AB}}=\frac{v_{\mathrm{AB}}}{A B}=\frac{3.4}{0.6}=5.67 \mathrm{rad} / \mathrm{s}$.

$$
\begin{array}{r}
(\text { Anticlockwise about } B) \\
v_{\mathrm{A}}=\text { vector } o a=4.2 \times \frac{4.713}{5}=4 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Ans.
5. Since the point D lies on $A B$,

$$
\frac{b a}{B A}=\frac{b d}{B D}
$$

Note: Point D is the midpoint of $A B$, therefore d is also midpoint of vector $b a$. By measurement, we find that

$$
v_{\mathrm{D}}=\text { vector } o d=4.3 \times \frac{4.713}{5}=4.1 \mathrm{~m} / \mathrm{s}
$$

Draw the acceleration diagram, as shown in Fig. (c)
1.

$$
\begin{gathered}
a_{\mathrm{BO}}^{r}=a_{\mathrm{B}}=\frac{v_{B O}^{2}}{O B}=\frac{4.713}{0.15}=148.1 \mathrm{~m} / \mathrm{s}^{2} \\
a_{\mathrm{AB}}^{r}=\frac{v_{A B}^{2}}{O B}=\frac{3.4}{0.6}=19.3 \mathrm{~m} / \mathrm{s}^{2}
\end{gathered}
$$

Scale for acceleration diagram: let $148.1 \mathrm{~m} / \mathrm{s}^{2}=5 \mathrm{~cm}$ in paper

Note: Since the crank $O B$ rotates at a constant speed, therefore $a_{\text {BO }}^{t}=0$
3. The acceleration of A with respect to $B\left(a_{\mathrm{AB}}\right)$ has two components:

$$
a_{\mathrm{AB}}=a_{\mathrm{AB}}^{r}+a_{\mathrm{AB}}^{t}
$$

from point b^{\prime}, draw vector $b^{\prime} x / / A B$ to represent $a^{r}{ }_{\mathrm{AB}}=19.3 \mathrm{~m} / \mathrm{s}=0.7 \mathrm{~cm}$ in paper (from $A \rightarrow B$), and from point x draw vector $x a^{\prime} \perp$ vector $b^{\prime} x$ whose magnitude is yet unknown.
4. Now from o^{\prime}, draw vector $o^{\prime} a^{\prime}$ parallel to the path of motion of A (which is along $A O$) to represent a_{A}. The vectors $x a^{\prime}$ and $o^{\prime} a^{\prime}$ intersect at a^{\prime}. Join $a^{\prime} b^{\prime}$.
5. Point D is the midpoint of $A B$, therefore d^{\prime} is also midpoint of vector $b^{\prime} a^{\prime}$,

$$
\frac{\dot{b} \dot{a}}{B A}=\frac{\dot{b} \dot{a}}{B D}
$$

Vector ód $=3.95 \mathrm{~cm}$ in paper

$$
a_{\mathrm{D}}=\text { vector ód }=3.95 \times \frac{148.1}{5}=117 \mathrm{~m} / \mathrm{s}^{2}
$$

b́á $=3.45 \mathrm{~cm}$ in paper

$$
\begin{aligned}
a_{\mathrm{AB}}^{t} & =\text { vector } b \dot{a} \dot{a}=3.45 \times \frac{148.1}{5}=103 \mathrm{~m} / \mathrm{s}^{2} \\
\alpha_{\mathrm{AB}}=\frac{a_{A B}^{t}}{B A}=\frac{103}{0.6} & =171.67 \mathrm{~m} / \mathrm{s}^{2}(\text { Clockwise about } \mathrm{B})
\end{aligned}
$$

Ans.

Example :2

In the mechanism, as shown in Figure below, the crank $O A$ rotates at 20 r.p.m. anticlockwise and gives motion to the sliding blocks B and D. The dimensions of the various links are $O A=300 \mathrm{~mm} ; A B=1200 \mathrm{~mm} ; B C=450 \mathrm{~mm}$ and $C D=450$ mm . For the given configuration, determine :

1. velocities of sliding at B and D,
2. Angular velocity of $C D$,
3. linear acceleration of D, and
4. angular acceleration of $C D$.

