$\boldsymbol{P}=\boldsymbol{f}(\boldsymbol{V})$ is simply the equation of the process path on $\boldsymbol{P} \boldsymbol{-} \boldsymbol{V}$ diagram. The quasiequilibrium expansion process described above is shown on a $\boldsymbol{P} \boldsymbol{-} \boldsymbol{V}$ diagram in figure 34.

Figure 36. The area under the process curve on a P-V diagram represents the boundary work.

The area under the process curve on a $\mathrm{P}-\mathrm{v}$ diagram is equal, in magnitude, to the work done during a quasi-equilibrium expansion or compression process of a closed system.

The gas can follow several different paths as it expands from state 1 to state 2 . these paths represent different processes as follows

3.4.1. Constant volume process

In this process
$V=$ cons $\tan t$
$d V=0$
$W=\int_{1}^{2} P d V=0$

Figure37. constant volume process

Example 3.4

A rigid tank contains air at 500 kPa and $150^{\circ} \mathrm{C}$. As a result of the surrounding, the temperature and pressure inside the tank drop to $65^{\circ} \mathrm{C}$ and 400 kPa , respectively. Determine the work done during this process.

Solution: Given $\mathrm{T}_{1}=150^{\circ} \mathrm{C}$ and $\mathrm{P}_{1}=500 \mathrm{kPa}$
$\mathrm{T}_{2}=65^{\circ} \mathrm{C}$ and $\mathrm{P}_{2}=400 \mathrm{kPa}$ withno change in volume because the tank is rigid.
$\mathrm{V}=$ constant and $\mathrm{dv}=0$ and so $\mathrm{W}=0$

3.4.2. Constant Pressure Process (isobaric process)

$$
\begin{aligned}
P & =\text { cons } \tan t \\
P & =P_{1}=P_{2} \\
W & =\int_{1}^{2} P d V=P\left(V_{2}-V_{1}\right)
\end{aligned}
$$

Figure38. Constant Pressure process
in this process the work of ideal gas is

$$
\begin{aligned}
& W=P\left(V_{2}-V_{1}\right) \\
& W=M R\left(T_{2}-T_{1}\right)
\end{aligned}
$$

and for vapor

$$
W=m P\left(v_{2}-v_{1}\right)
$$

Example 3.5

Five kilograms of saturated vapor water at 1 Mpa is contained in a cylinder fitted with a movable piston. This system is now heated at constant pressure until the temperature of the steam is $300^{\circ} \mathrm{C}$. Calculate the work done by the steam during the process.

Solution: Given sat vapor water
$\mathrm{m}=5 \mathrm{~kg} \quad \mathrm{P}_{1}=\mathrm{P}_{2}=1 \mathrm{MPa}$
$\mathrm{T}_{2}=300^{\circ} \mathrm{C}$
From the saturated water table
$v_{1}=v_{g_{\text {alMPa }}}=0.19444 \mathrm{~m}^{3} / \mathrm{kg}$
$T_{\text {sat }}=179.91^{\circ} \mathrm{C}$
the second state is a super heated vapor because $T_{2}>T_{s a t}$
$v_{2}=v_{\text {at iMPa } 300^{\circ} \mathrm{C}}=0.2579 \mathrm{~m}^{3} / \mathrm{kg}$
the process is constant pressure expansion
$W=m P\left(v_{2}-v_{1}\right)$
$W=5 \mathrm{~kg} \times 1000 \mathrm{kPa} \times\left(0.2579 \mathrm{~m}^{3} / \mathrm{kg}-0.19444 \mathrm{~m}^{3} / \mathrm{kg}\right)$
$W=317.3 \mathrm{~kJ}$

3.4.3. Hyperbolic Process

In this process

$$
\begin{aligned}
& P V=\text { Const. }=c \quad \rightarrow \quad P=\frac{c}{V} \\
& W=\int_{1}^{2} p d V=\int_{1}^{2} \frac{c}{V} d V=c \int_{1}^{2} \frac{d V}{V}=c \ln \frac{V_{2}}{V_{1}} \\
& W=P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}=P_{2} V_{2} \ln \frac{V_{2}}{V_{1}}=P_{1} V_{1} \ln \frac{P_{1}}{P_{2}}=P_{2} V_{2} \ln \frac{P_{1}}{P_{2}}
\end{aligned}
$$

Figure39 . hyperbolic process
this process is called isothermal process for ideal gas(only), because for ideal gases when $P V=$ const. so $T=$ const.

Example 3.6

One tenth kg of saturated vapor water is at 2 MPa is compressed in hyperbolic process to a pressure of 4 MPa . Find the final temperature of the water and the work done.
Solution: Given $\mathrm{m}=0.1 \mathrm{~kg} \mathrm{P}_{1}=2 \mathrm{MPa}$ sat water vapor
$\mathrm{P}_{2}=4 \mathrm{MPa}$ and the process is $\mathrm{PV}=$ constant

At the first state $v_{1}=v_{g_{\text {at } 2 \mathrm{MPa}}}=0.09963 \mathrm{~m}^{3} / \mathrm{kg}$

$$
P_{2} v_{2}=P_{1} v_{1} \quad \text { OR } \quad v_{2}=v_{1} \frac{P_{1}}{P_{2}}=0.09963 \mathrm{~m}^{3} / \mathrm{kg} \times \frac{2 M P a}{4 M P a}=0.04982 \mathrm{~m}^{3} / \mathrm{kg}
$$

the sat. volume at $4 \mathrm{MPa} v_{g}=0.04978 \mathrm{~m}^{3} / \mathrm{kg}$
it is found that $v_{2}>v_{g{ }_{\text {at } 4 \mathrm{MPa}}}$ so the state is superheated vapor
to find the temperature by using the superheated water table and interpolation as follows
$\mathrm{T}^{\circ} \mathrm{C}$

$$
v m^{3} / \mathrm{kg}
$$

250.40 .04978

$$
0.04982
$$

$275.0 \quad 0.05457$

$$
T=250.4+\frac{(0.04982-0.04978)}{(0.05457-0.04978)}(275-250.4)=250.6^{\circ} \mathrm{C}
$$

and the work can be calculated by

$$
W=m P_{1} v_{1} \ln \frac{P_{1}}{P_{2}}=0.1 \times 2000 \times 0.09963 \ln \frac{2}{4}=-13.812 \mathrm{~kJ}
$$

3.4.4. Isothermal Process (Constant Temperature Process)

This process can be discussed separately for ideal gas and vapor
1- Ideal gas
when the temperature is constant $(T=c o n s \tan t)$ and from the ideal gas equation of state, with no change in the mass $(P V=$ cons $\tan t)$. the process becomes hyperbolic process and

$$
\begin{aligned}
& W=P_{1} V_{1} \ln \frac{V_{2}}{V_{1}}=P_{2} V_{2} \ln \frac{V_{2}}{V_{1}}=P_{1} V_{1} \ln \frac{P_{1}}{P_{2}}=P_{2} V_{2} \ln \frac{P_{1}}{P_{2}} \\
& P V=m R T \\
& W=m R T \ln \frac{V_{2}}{V_{1}}=m R T \ln \frac{P_{1}}{P_{2}}
\end{aligned}
$$

Example 3.7

One kilogram of air at $500^{\circ} \mathrm{C}$ is expanded isothermally from a pressure of 2 MPa to a pressure of 0.5 MPa , find the work done by the air.
Solution: Given Air of $\mathrm{m}=1 \mathrm{~kg}$ at $\boldsymbol{P}_{1}=2 \mathrm{MPa} \mathrm{P}_{2}=0.5 \mathrm{MPa} \mathrm{T}_{1}=\mathrm{T}_{2}=\mathrm{T}=500^{\circ} \mathrm{C}$ It is an ideal gas and isothermal process of expansion

$$
\begin{aligned}
& W=m R T \ln \frac{P_{1}}{P_{2}}= \\
& W=1 \mathrm{~kg} \times 0.287 \times(500+273.15) \ln \frac{2}{0.5}=307.61 \mathrm{~kJ}
\end{aligned}
$$

2-Substance with phase change
i- Saturated region
In saturated region when the temperature is constant the pressure is also constant because the pressure and temperature are dependent properties $P=f(\boldsymbol{T})$. Therefore, the work in this process is the same to that as in constant pressure process
ii- Superheated region
In this region the temperature and pressure are not dependent properties $(P \neq f(T)$ only). Therefore, the process can be assumed as polytropic process
$\left(P V^{n}=\right.$ cons $\left.\tan t\right)$

Example 3.8

0.4 kg of saturated liquid water at $120^{\circ} \mathrm{C}$ is vaporized in piston cylinder device isothermally until the volume of liquid becomes one tenth of the total volume. Find the work done by the system.
Solution: Given sat. liquid water $\mathrm{m}=0.4 \mathrm{~kg} \mathrm{~T}=120^{\circ} \mathrm{C}$ isothermally

$$
V_{f 2}=\frac{V_{2}}{10}, \quad V_{g 2}=\frac{9 V_{2}}{10}
$$

as the water is still in the saturated region the expansion is also constant pressure of $\mathrm{P}=\mathrm{P}_{\text {sat at }} 120^{\circ} \mathrm{C}=198.53 \mathrm{kPa}$
$v_{f}=0.00106 \mathrm{~m}^{3} / \mathrm{kg} \quad v_{g}=0.8919 \mathrm{~m}^{3} / \mathrm{kg} \quad v_{1}=v_{f}=0.00106 \mathrm{~m}^{3} / \mathrm{kg}$
$V_{f 2}=m_{f} v_{f}=\frac{V_{2}}{10}=\frac{m v_{2}}{10} \rightarrow v_{2}=10 \frac{m_{f}}{m} v_{f}=10(1-x) v_{f}$
$V_{g 2}=m_{g} v_{g}=\frac{9 V_{2}}{10}=\frac{9 m v_{2}}{10} \rightarrow v_{2}=\frac{10}{9} \frac{m_{g}}{m} v_{g}=\frac{10}{9} x v_{g}$
$v_{2}=10(1-x) v_{f}=\frac{10}{9} x v_{g} \rightarrow x=\frac{v_{f}}{\frac{1}{9} v_{g}+v_{f}}=\frac{0.00106}{\frac{0.8919}{9}+0.00106}=0.0106$
$v_{2}=v_{f}+x\left(v_{g}-v_{f}\right)=0.00106+.0106(0.8919-.00106)=0.0105 \mathrm{~m}^{3} / \mathrm{kg}$ or
$v_{2}=\frac{10}{9} x v_{g}=\frac{10}{9} \times 0.0106 \times 0.8919=0.0105 \mathrm{~m}^{3} / \mathrm{kg}$
$W=m P\left(v_{2}-v_{1}\right)=0.4 \times 198.53 \times(0.0105-0.00106)=0.75 \mathrm{~kJ}$

3.4.5. Polytropic Process

During expansion and compression processes of real gases, pressure and volume are often related by $\left(P V^{n}=c\right)$ where n , and c are constants. A process of this kind is called a polytropic process.
$W=\int_{1}^{2} P d V$
$P V^{n}=c \quad \rightarrow \quad P=\frac{c}{V^{n}}=c V^{-n}$
$W=\int_{1}^{2} c V^{-n} d V=\left.\frac{c V^{-n+1}}{1-n}\right|_{1} ^{2}=\left.\frac{P V^{n} V^{1-n}}{1-n}\right|_{1} ^{2}=\left.\frac{P V}{1-n}\right|_{1} ^{2}$
$W=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}$

Figure40. Polytropic process

For change phase substance, the polytropic process
$W=\frac{m\left(P_{2} v_{2}-P_{1} v_{1}\right)}{1-n} \quad$ where v is the specific volume the ideal gas polytropic process can be written as

$$
\begin{array}{ll}
W=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n} \text { or } & \frac{P_{2}}{P_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{n} \\
W=\frac{m R\left(T_{2}-T_{1}\right)}{1-n} & \frac{V_{2}}{V_{1}}=\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1}{n}}
\end{array}
$$

for ideal gas in polytropic process we can drive the following relation:

$$
\begin{array}{lll}
P_{1} V_{1}=m R T_{1} \\
P_{1} V_{1}^{n}=C & \text { and } & P_{2} V_{2}=m R T_{2} \\
P_{2} V_{2}^{n}=C
\end{array}
$$

$$
\begin{aligned}
& P_{1} V_{1}^{n}=P_{2} V_{2}^{n} \\
& \frac{P_{2}}{P_{1}}=\left(\frac{V_{1}}{V_{2}}\right)^{n}=\left(\frac{T_{2}}{T_{1}}\right)^{\frac{n}{n-1}} \\
& \frac{V_{2}}{V_{1}}=\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1}{n}}=\left(\frac{T_{1}}{T_{2}}\right)^{\frac{1}{n-1}} \text { for ideal gas only } \\
& \frac{T_{2}}{T_{1}}=\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}=\left(\frac{V_{1}}{V_{2}}\right)^{n-1}
\end{aligned}
$$

Example 3.9

Carbon dioxide with mass of 5 kg at 100 kPa pressure and 300 K temperature is compressed polyropically according to the law $\mathrm{PV}^{1.32}=\mathrm{C}$ until the pressure of 500 kPa . Find (a) initial and final volume (b) the final temperature (c) the work done

Solution: Given CO_{2} gas $m=5 \mathrm{~kg} \quad P_{1}=100 \mathrm{kPa} \quad T_{1}=300^{\circ} \mathrm{C}$

$$
\begin{aligned}
& P_{2}=500 \mathrm{kPa} \text { for } \mathrm{CO}_{2} \text { the gas constant } \mathrm{R}=0.2968 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& V_{1}=\frac{m R T_{1}}{P_{1}}=\frac{5 \times 0.1889 \times 300}{100}=2.8335 \mathrm{~m}^{3} \\
& V_{2}=V_{1}\left(\frac{P_{1}}{P_{2}}\right)^{\frac{1}{n}}=2.8335 \times\left(\frac{100}{500}\right)^{\frac{1}{1.32}}=0.8371 \mathrm{~m}^{3} \\
& T_{2}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{\frac{n-1}{n}}=300 \times\left(\frac{500}{100}\right)^{\frac{1.32-1}{1.32}}=443.2 \mathrm{~K} \\
& W=\frac{m R\left(T_{2}-T_{1}\right)}{1-n}=\frac{5 \times 0.1889(443.2-300)}{1-1.32}=422.5 \mathrm{~kJ} \text { or } \\
& W=\frac{P_{2} V_{2}-P_{1} V_{1}}{1-n}=\frac{500 \times 0.8371-100 \times 2.8335}{1-1.32}=-422.5
\end{aligned}
$$

3.3 FIRST LAW OF THERMODYNAMICS

It is also known as the conservation of energy principle. It states that energy can be neither created nor destroyed; it can only change forms. The first law of thermodynamics, or the conservation of energy principle for a closed system or a fixed mass, may be expressed as follows:
$\left[\begin{array}{c}\text { Net energy transfer } \\ \text { to (or from) the system } \\ \text { as heat and work }\end{array}\right]=\left[\begin{array}{c}\text { Net increase (or decrease) } \\ \text { in the total energy } \\ \text { of the system }\end{array}\right]$
or

$$
Q-W=\Delta E \quad(k J)
$$

Where
$Q=$ net heat transfer across system boundary $\left(=\sum Q_{\text {in }}-\sum Q_{\text {out }}\right)$
$\mathbf{W}=$ net work done in all forms $\left(=\sum W_{\text {out }}-\sum W_{\text {in }}\right)$
$\Delta E=$ net change in the total energy of system $\left(E_{2}-E_{1}\right)$
the change in total energy of a system during a process can be expressed as the sum of the change in its internal, kinetic, and potential energies:
$\Delta E=\Delta U+\Delta K E+\Delta P E$
and by substituting this relation in the energy equation:
$Q-W=\Delta U+\Delta K E+\Delta P E$
where
$\Delta U=m\left(u_{2}-u_{1}\right)$
$\Delta K E=\frac{m}{2000}\left(V_{2}^{2}-V_{1}^{2}\right)$
$\Delta P E=\frac{m}{1000}\left(Z_{2}-Z_{1}\right)$
Most closed system encountered in practice are stationary i.e. they do not involve any change in their velocity or the elevation of their center of gravity during a process. Thus for stationary closed system the change in kinetic and potential energies are negligible $(\Delta K E=\triangle P E=0)$, and the first - law relation reduces to

$$
Q-W=\Delta U \quad(k J)
$$

Sometimes it is convenient to consider the work term in two parts: $\boldsymbol{W}_{\text {other }}$ and $\boldsymbol{W}_{\boldsymbol{b}}$. where $\boldsymbol{W}_{\text {other }}$ represents all forms of work except the boundary work. Then the first law takes the following form:
$Q-W_{\text {other }}-W_{b}=\Delta U \quad(k J)$
It is extremely important that the sign convention be observed for heat and work interactions. Heat flow to a system and work done by a system are positive and heat flow from a system and work done on a system are negative.

Other Forms of the First-Law Relation:

The first law relation for closed system can be written in various forms. It can be represented by unit mass:
$q-w=\Delta u \quad(k J / k g)$
The rate form of the first law is Written as:
$\dot{Q}-\dot{W}=\frac{d U}{d \tau} \quad(k W)$
where \dot{Q} is the rate of net heat transfer, \dot{W} is the power, and $\frac{d U}{d \tau}$ is the rate of change of internal energy.

It can also be expressed in the differential form as
$\delta Q-\delta W=d U$
$\delta q-\delta w=d u$
for a cyclic process, the initial and final state are identical, and therefore $\Delta U=U_{2}-U_{1}=0$. then the first law relation for a cycle simplifies to $Q-W=0$
that is, the net heat transfer and network done during a cycle must be equal.

Example 3.10

A rigid vessel of $.1 \mathrm{~m}^{3}$ volume contains refrigerant- 125% liquid and 95% vapor by volume at $24^{\circ} \mathrm{C}$. the vessel is heated until the refrigerant exit as saturated vapor. Find (a) the initial pressure in the vessel (b) the mass of Refrigerant-12, (c) the final pressure and temperature, and (d) heat transfer occurs during the process:
Solution: Given $V=0.1 \mathrm{~m}^{3} 10 \%$ liquid 90% vapor $\mathrm{T}_{1}=24^{\circ} \mathrm{C}$ second state is sat. vapor.

$$
V_{f}=0.05 \mathrm{~V}=0.05 \times 0.1=0.005 \mathrm{~m}^{3}, \quad V_{g}=0.95 \mathrm{~V}=0.95 \times 0.1=0.095 \mathrm{~m}^{3}
$$

and from the sat. R-12 table we find that the following properties at $24^{\circ} \mathrm{C}$

$$
\begin{aligned}
& P_{\text {sat }}=634.05 \mathrm{kPa}, \quad v_{f}=0.0007607 \mathrm{~m}^{3} / \mathrm{kg}, \quad v_{g}=0.02759 \mathrm{~m}^{3} / \mathrm{kg}, \\
& u_{f}=58.25 \mathrm{~kJ} / \mathrm{kg}, \quad u_{g}=179.85 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

The initial pressure: because the initial state is saturated mixture at $24^{\circ} \mathrm{C}$, then $\mathrm{P}_{1}=\mathrm{P}_{\text {sat at } 24}{ }^{\circ} \mathrm{C}=634.05 \mathrm{kPa}$
The mass of R-12 in the vessel

$$
\begin{aligned}
& m_{f}=\frac{V_{f}}{v_{f}}=\frac{0.005}{0.0007607}=6.573 \mathrm{~kg}, \quad m_{g}=\frac{V_{g}}{v_{g}}=\frac{0.095}{0.02759}=3.443 \mathrm{~kg} \\
& m=m_{f}+m_{g}=6.573+3.443=10.016 \mathrm{~kg}
\end{aligned}
$$

(c) The final pressure and temperature of the $\mathrm{R}-12$ in the vessel: the final state is saturated vapor with $v_{2}=\frac{V}{m}=\frac{0.1}{10.016}=.01 \mathrm{~m}^{3} / \mathrm{kg}$ and at the second state $v_{g}=v_{2}=0.01 \mathrm{~m}^{3} / \mathrm{kg}$
From the pressure table, we find the following data and using extrapolation we can find the data at the $\mathrm{v}_{\mathrm{g}}=0.01 \mathrm{~m}^{3} / \mathrm{kg}$

P kPa	$\mathrm{T}^{\circ} \mathrm{C}$	$\mathrm{v}_{\mathrm{f}} \mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{v}_{\mathrm{g}} \mathrm{m}^{3} / \mathrm{kg}$	$\mathrm{u}_{\mathrm{f}} \mathrm{kJ} / \mathrm{kg}$	$\mathrm{u}_{\mathrm{g}} \mathrm{kJ} / \mathrm{kg}$
1400	56.09	0.0008448	0.01222	90.28	191.11
1600	62.19	0.0008660	0.01054	96.80	192.95
1664.4	64.15	0.0008728	0.01	98.90	193.54

So $\mathrm{P}_{2}=1664.4 \mathrm{kPa}, \quad \mathrm{T}_{2}=64.15^{\circ} \mathrm{C}$
(d)The heat transfer: because there is no change in volume so $\mathrm{W}=0$
$Q=m\left(u_{2}-u_{1}\right)$
$u_{1}=u_{f}+x\left(u_{g}-u_{f}\right)=58.25+0.344(179.85-58.25)=100.08 \mathrm{~kJ} / \mathrm{kg}$
$u_{2}=u_{g_{\text {at }} \text { second state }}=193.54 \mathrm{~kJ} / \mathrm{kg}$
$Q=10.016 \times(193.54-100.08)=2940.9 \mathrm{~kJ}$

Example 3.11

A rigid insulated tank of $0.5 \mathrm{~m}^{3}$, contains 5 kg of water at $100^{\circ} \mathrm{C}$. An electric heater is passing through the tank with a voltage of 200 V and a current of 5A for 30 minutes. Find the final state of water.
Solution: Given $V=0.5 \mathrm{~m}^{3}$, rigid, insulated $\mathrm{Q}=0, \mathrm{~m}=5 \mathrm{~kg}$ water, $\mathrm{T}=100^{\circ} \mathrm{C}$, electric heater $V=200$ Volt, $I=5 A$, time $=30 \mathrm{minutes}=1800 \mathrm{sec}$.
The energy equation can be written as:

$$
Q-W_{e}-W_{b}=\Delta U
$$

where $\mathrm{Q}=0$ for insulated tank, $\mathrm{W}_{\mathrm{b}}=$ boundary work=0 rigid tank
$\mathrm{W}_{\mathrm{e}}=$ electric work $=V \times I \times$ time $/ 1000=200 \times 5 \times 1800 / 1000=1800 \mathrm{~kJ}$
This work is negative because it is done in the system.

$$
\begin{aligned}
& -W_{e}=m \Delta u \\
& -(-1800)=5 \Delta u \\
& \Delta u=360 \mathrm{~kJ}
\end{aligned}
$$

from the first state $\mathrm{T}=100^{\circ} \mathrm{C}$, and $v_{1}=\frac{V}{m}=\frac{0.5}{5}=.1 \mathrm{~m}^{3} / \mathrm{sec}$
and it is shown that the state is saturated mixture because $v_{f}<v_{1}<v_{g}$

$$
\begin{aligned}
x_{1}= & \frac{v_{1}-v_{f}}{v_{g}-v_{f}}=\frac{0.1-.001044}{1.6729-.001044}=.06 \\
u_{1}= & u_{f}+x_{1} u_{f g}=418.94+0.06 \times 2087.6=542.5 \mathrm{~kJ} / \mathrm{kg} \\
& \quad u_{2}=u_{1}+\Delta u=542.5+360=902.5 \mathrm{~kJ} / \mathrm{kg} \\
& \quad v_{2}=v_{1}=0.1 \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

It is shown from the values of the internal energy and specific volume that the water is still saturated mixture. And by trial and error we can get the temperature or pressure.

$$
T_{2}=134.9^{\circ} \mathrm{C}, \quad P_{2}=312.3 \mathrm{kPa}, x=.1696=16.96 \%
$$

Example 3.12

A piston cylinder device contains water at 300 kPa , and $250^{\circ} \mathrm{C}$ with a volume of $0.4 \mathrm{~m}^{3}$. If the weight of the piston is required a pressure of 300 kPa to rise it. The heat is transfer until the water become saturated mixture with quality of 80%. (a) prove that the heat transfer in a constant pressure process equal to the change in enthalpy. (b) the work done. (c) heat transfer during the process. Solution: Given $P_{1}=300 \mathrm{kPa}, V_{1}=0.4 \mathrm{~m}^{3}, T_{1}=250^{\circ} \mathrm{C}$ constant pressure process. $x_{2}=0.8$
for constant pressure process $W=P\left(V_{2}-V_{1}\right)=P V_{2}-P V_{1}$
the energy equation for closed system $Q=W+\Delta U$
$Q=P V_{2}-P V_{1}+U_{2}-U_{1}=\left(P_{2} V_{2}+U_{2}\right)-\left(P_{1} V_{1}+U_{1}\right)$
$Q=H_{2}-H_{1}=\Delta H$
For $P_{1}=300 \mathrm{kPa}, T_{1}=250^{\circ} \mathrm{C}$, from superheated water table
$v_{1}=0.7964 \mathrm{~m}^{3} / \mathrm{kg}, u_{1}=2728.7 \mathrm{~kJ} / \mathrm{kg}, \quad h_{1}=2967.6 \mathrm{~kJ} / \mathrm{kg}$
at state $2 P_{2}=300 \mathrm{kPa}, x_{2}=0.8$
$v_{2}=v_{f}+x\left(v_{g}-v_{f}\right)=0.001073+0.8(0.6058-.001073)=0.4849 \mathrm{~m}^{3} / \mathrm{kg}$
$u_{2}=u_{f}+x u_{f g}=561.15+0.8 \times 1982.4=2147.07 \mathrm{~kJ} / \mathrm{kg}$
$h_{2}=h_{f}+x h_{f g}=561.47+0.8 \times 2163.8=2292.51 \mathrm{kj} / \mathrm{kg}$
$m=\frac{V_{1}}{v_{1}}=\frac{0.4}{0.7964}=0.5023 \mathrm{~m}^{3} / \mathrm{kg}$
$W=m P\left(v_{2}-v_{1}\right)=0.5023 \times 300 \times(0.4849-0.7964)=-46.94 \mathrm{~kJ}$
(c) the heat transfer: it can be calculated by two ways,
(i) $Q=W+m \Delta u=-46.94+0.5023 \times(2147.07-2728.7)=-339.1 \mathrm{~kJ}$
(ii) $Q=m \Delta h=0.5023 \times(2292.5-2967.6)=-339.1 \mathrm{~kJ}$

3.5. Specific heats:

The specific heat is defined as the energy required to raise the temperature of a unit mass of a substance by one degree.
We are interested in two kinds of specific heats.

3.5.1 Specific Heat at Constant Volume CV:

It is the energy required to raise the temperature of the unit mass of substance by one degree as the volume maintained constant.

$$
\begin{aligned}
& C v=\frac{\delta Q}{d T} \\
& \delta Q=C v d T
\end{aligned}
$$

In a closed system at a constant volume process of heating the energy equation can be written as:

$$
\begin{aligned}
& \delta Q-\delta W=d U \quad \text { and for constant volume } \\
& \delta W=0
\end{aligned}
$$

so
$\delta Q=d U$
$C v d T=d U$
and $\quad C v=\left(\frac{d U}{d T}\right)_{V}$

