# Control Systems (CS) 

## Lecture-16 <br> Construction of Root Loci (Part A)

Dr. Dhafer Manea Hachim AL-HASNAWI<br>Assist Proof<br>Al-Furat Al-Awsat Technical University<br>Engineering Technical College / Najaf email:coj.dfr@atu.edu.iq

## Construction of root loci

- Step-1: The first step in constructing a root-locus plot is to locate the open-loop poles and zeros in s-plane.



## Construction of root loci

- Step-2: Determine the root loci on the real axis.
- To determine the root loci on real axis we select some test points.
- e.g: $p_{1}$ (on positive real axis).
$\angle s=\angle s+1=\angle s+2=0^{\circ}$
- The angle condition is not satisfied.
- Hence, there is no root locus on the positive real axis.



## Construction of root loci

- Step-2: Determine the root loci on the real axis.
- Next, select a test point on the negative real axis between 0 and -1 .
- Then
$\angle s=180^{\circ}, \quad \angle s+1=\angle s+2=0^{\circ}$
- Thus

$$
-\angle s-\angle s+1-\angle s+2=-180^{\circ}
$$

- The angle condition is satisfied. Therefore, the portion of the negative real axis between 0 and -1 forms a portion of the root locus.



## Construction of root loci

- Step-2: Determine the root loci on the real axis.
- Now, select a test point on the negative real axis between -1 and -2.
- Then

$$
\angle s=\angle s+1=180^{\circ}, \quad \angle s+2=0^{0.5}
$$

- Thus
$-\angle s-\angle s+1-\angle s+2=-360^{\circ}$
- The angle condition is not satisfied. Therefore, the negative real axis between -1 and -2 is not a part of the root locus.


## Construction of root loci

- Step-2: Determine the root loci on the real axis.
- Similarly, test point on the negative real axis between -2 and $-\infty$ satisfies the angle condition.
- Therefore, the negative real axis between -2 and $-\infty$ is part of the root locus.



## Construction of root loci

- Step-2: Determine the root loci on the real axis.



## Construction of root loci

- Step-3: Determine the asymptotes of the root loci.

$$
\text { Angle of asymptotes }=\psi=\frac{ \pm 180^{\circ}(2 k+1)}{n-m}
$$

- where
- n-----> number of poles
- m-----> number of zeros
- For this Transfer Function $G(s) H(s)=\frac{K}{s(s+1)(s+2)}$

$$
\psi=\frac{ \pm 180^{\circ}(2 k+1)}{3-0}
$$

## Construction of root loci

- Step-3: Determine the asymptotes of the root loci.

$$
\begin{aligned}
\psi & = \pm 60^{\circ} & & \text { when } k=0 \\
& = \pm 180^{\circ} & & \text { when } k=1 \\
& = \pm 300^{\circ} & & \text { when } k=2 \\
& = \pm 420^{\circ} & & \text { when } k=3
\end{aligned}
$$

- Since the angle repeats itself as $k$ is varied, the distinct angles for the asymptotes are determined as $60^{\circ},-60^{\circ},-180^{\circ}$ and $180^{\circ}$.
- Thus, there are three asymptotes having angles $60^{\circ},-60^{\circ}$, $180^{\circ}$.


## Construction of root loci

- Step-3: Determine the asymptotes of the root loci.
- Before we can draw these asymptotes in the complex plane, we must find the point where they intersect the real axis.
- Point of intersection of asymptotes on real axis (or centroid of asymptotes) can be find as out

$$
\sigma=\frac{\sum \text { poles }-\sum \text { zeros }}{n-m}
$$

## Construction of root loci

- Step-3: Determine the asymptotes of the root loci.

For $\quad G(s) H(s)=\frac{K}{s(s+1)(s+2)}$

$$
\begin{gathered}
\sigma=\frac{(0-1-2)-0}{3-0} \\
\sigma=\frac{-3}{3}=-1
\end{gathered}
$$

## Construction of root loci

- Step-3: Determine the asymptotes of the root loci.

$$
\sigma=-1
$$



## Home Work

- Consider following unity feedback system.

- Determine
- Root loci on real axis
- Angle of asymptotes
- Centroid of asymptotes


## Construction of root loci

- Step-4: Determine the breakaway point.
- The breakaway point corresponds to a point in the $s$ plane where multiple roots of the characteristic equation occur.
- It is the point from which the root locus branches leaves real axis and enter in complex plane.



## Construction of root loci

- Step-4: Determine the break-in point.
- The break-in point corresponds to a point in the $s$ plane where multiple roots of the characteristic equation occur.
- It is the point where the root locus branches arrives at real axis.



## Construction of root loci

- Step-4: Determine the breakaway point or break-in point.
- The breakaway or break-in points can be determined from the roots of

$$
\frac{d K}{d s}=0
$$

- It should be noted that not all the solutions of $\mathrm{dK} / \mathrm{ds}=0$ correspond to actual breakaway points.
- If a point at which $\mathrm{dK} / \mathrm{ds}=0$ is on a root locus, it is an actual breakaway or break-in point.
- Stated differently, if at a point at which $\mathrm{dK} / \mathrm{ds}=0$ the value of K takes a real positive value, then that point is an actual breakaway or break-in point.


## Construction of root loci

- Step-4: Determine the breakaway point or break-in point.

$$
G(s) H(s)=\frac{K}{s(s+1)(s+2)}
$$

- The characteristic equation of the system is

$$
\begin{gathered}
1+G(s) H(s)=1+\frac{K}{s(s+1)(s+2)}=0 \\
\frac{K}{s(s+1)(s+2)}=-1 \\
K=-[s(s+1)(s+2)]
\end{gathered}
$$

- The breakaway point can now be determined as

$$
\frac{d K}{d s}=-\frac{d}{d s}[s(s+1)(s+2)]
$$

## Construction of root loci

- Step-4: Determine the breakaway point or break-in point.

$$
\begin{aligned}
\frac{d K}{d s} & =-\frac{d}{d s}[s(s+1)(s+2)] \\
\frac{d K}{d s} & =-\frac{d}{d s}\left[s^{3}+3 s^{2}+2 s\right] \\
\frac{d K}{d s} & =-3 s^{2}-6 s-2
\end{aligned}
$$

- Set $d K / d s=0$ in order to determine breakaway point.

$$
\begin{gathered}
-3 s^{2}-6 s-2=0 \\
3 s^{2}+6 s+2=0 \\
s=-0.4226 \\
=-1.5774
\end{gathered}
$$

## Construction of root loci

- Step-4: Determine the breakaway point or break-in point.

$$
\begin{aligned}
s & =-0.4226 \\
& =-1.5774
\end{aligned}
$$

- Since the breakaway point must lie on a root locus between 0 and -1 , it is clear that $s=-0.4226$ corresponds to the actual breakaway point.
- Point $s=-1.5774$ is not on the root locus. Hence, this point is not an actual breakaway or break-in point.
- In fact, evaluation of the values of $K$ corresponding to $s=-$ 0.4226 and $s=-1.5774$ yields

$$
\begin{array}{ll}
K=0.3849, & \text { for } s=-0.4226 \\
K=-0.3849, & \text { for } s=-1.5774
\end{array}
$$

## Construction of root loci

- Step-4: Determine the breakaway point.



## Construction of root loci

- Step-4: Determine the breakaway point.


