SYSTEM OF LINEAR ALGEBRIC EQUATIONS

Consider the system:

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=c_{1} \tag{1.a}\\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=c_{2} \tag{1.b}\\
\vdots \tag{1.c}\\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=c_{n}
\end{gather*}
$$

$a^{\prime} s, c^{\prime} s$ are constant and n is the number of equations, in matrix form:

$$
[A]=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
\vdots & & & & \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]
$$

Methods of Solution

(A)Direct Methods
(B) Iteration Methods
(A) Direct Methods:

1. Gauss Elimination: The matrix A is reduced to an upper and lower triangular matrix. the unknown are evaluated by backward substitution i.e.

$$
[A] \Rightarrow \overbrace{\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
0 & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & a_{n n}
\end{array}\right]}^{[U]} \text { or } \Rightarrow \overbrace{\left[\begin{array}{cccc}
0 & 0 & \ldots & 0 \\
a_{21} & a_{22} & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]}^{[L]}
$$

To perform the above processes:

1. Eliminate x_{1} from first equation through $n^{t h}$ equations. By multiplying Eq.(1.a) by a_{21} / a_{11} and subtract the resulting eq. from Eq.(1.b).
2. Procedure is repeated for the remaining Eq. such as Eq.(1.a) is multiplied by $\frac{a_{31}}{a_{11}}$ and the resulting Eq. is subtracted from third Eq. and so on till the upper triangular matrix is obtained.
3. Back substitution to obtain $x_{1}, x_{2}, \ldots x_{n}$ as shown.

$$
\left[\begin{array}{ccc|c}
a_{11} & a_{12} & a_{13} & c_{1} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & c^{\prime}{ }_{2} \\
0 & 0 & a_{33}^{\prime \prime} & c_{3}^{\prime \prime}
\end{array}\right] \stackrel{\text { back subs. }}{\Longrightarrow} \begin{gathered}
x_{3}=c_{3}^{\prime \prime} / a_{33}^{\prime \prime} \\
x_{2}=\left(c_{2}^{\prime}-a_{23}^{\prime} x_{3}\right) / a_{22}^{\prime} \\
x_{1}=\left(c_{1}-a_{12} x_{2}-a_{13} x_{3}\right) / a_{11}
\end{gathered}
$$

Example: Use Gauss Elimination method to solve the following equations (carry out six significant figures during computation

$$
\begin{gather*}
3 x_{1}-0.1 x_{2}-0.2 x_{3}=7.85 \tag{a}\\
0.1 x_{1}+7 x_{2}-0.3 x_{3}=-19.3 \tag{b}\\
0.3 x_{1}-0.2 x_{2}+10 x_{3}=71.4 \tag{c}
\end{gather*}
$$

Solution: Multiply (a) by $0.1 / 3$ and subtract from (b).
Multiply (a) by $0.3 / 3$ and subtract from (c).
That gives:

$$
\left[\begin{array}{ccc|c}
3 & -0.1 & -0.2 & 7.85 \\
0 & 7.00333 & -0.293333 & -19.5617 \\
0 & -0.19000 & 10.0200 & 70.615
\end{array}\right] \begin{gathered}
a \\
b^{\prime} \\
c^{\prime}
\end{gathered}
$$

Multiply $\left(b^{\prime}\right)$ by $-0.19000 / 7.00333$ and subtract from (c^{\prime}) gives:

$$
\left[\begin{array}{ccc|c}
3 & -0.1 & -0.2 & 7.85 \\
0 & 7.00333 & -0.293333 & -19.5617 \\
0 & 0 & 10.0120 & 70.843
\end{array}\right] \begin{gathered}
a \\
b^{\prime} \\
c^{\prime \prime}
\end{gathered}
$$

Back substitution gives:

$$
x_{3}=7.00003 \quad x_{2}=-2.50000 \quad x_{1}=3.00000
$$

2. Gauss-Jordan Method:

It is similar to G.E. method for solution system of eq. $A x=b$ but in this method the matrix A reduced to diagonal matrix instead of triangular matrix.
Example: Use Gauss-Jordan method to solve the following equations

$$
\begin{gather*}
4 x_{1}-9 x_{2}+2 x_{3}=5 \tag{a}\\
2 x_{1}-4 x_{2}+6 x_{3}=3 \tag{b}\\
x_{1}-x_{2}+3 x_{3}=4 \tag{c}
\end{gather*}
$$

Solution: Multiply (1) by $2 / 4$ and subtract from (2).

Multiply (1) by $1 / 4$ and subtract from (3).

$$
\left[\begin{array}{ccc|c}
4 & -9 & 2 & 5 \\
0 & 0.5 & 5 & 0.5 \\
0 & 1.25 & 2.5 & 2.75
\end{array}\right] \quad \begin{aligned}
& \ldots 1 \\
& \ldots .2^{\prime} \\
& \ldots
\end{aligned} 3^{\prime}
$$

Eliminate x_{2} from (3^{\prime}) and (1) by multiply (2^{\prime}) by $1.25 / 0.5$ and subtract from (3^{\prime}), multily $\left(2^{\prime}\right)$ by $-9 / 0.5$ and subtract from (1) gives:

$$
\left[\begin{array}{ccc|c}
4 & 0 & 92 & 14 \\
0 & 0.5 & 5 & 0.5 \\
0 & 0 & -10 & 1.5
\end{array}\right] \quad \begin{aligned}
& \ldots .1^{\prime} \\
& \ldots .2^{\prime} \\
& \ldots .3^{\prime \prime}
\end{aligned}
$$

Eliminate x_{3} from (1^{\prime}) and ($2^{\prime \prime}$)
Multiply ($3^{\prime \prime}$) by $92 /-10$ and subtract from (1^{\prime}).
Multiply ($3^{\prime \prime}$) by $5 /-10$ and subtract from (2^{\prime}).
That gives:

$$
\left[\begin{array}{ccc|c}
4 & 0 & 0 & 27.8 \\
0 & 0.5 & 0 & 1.25 \\
0 & 0 & -10 & 1.5
\end{array}\right]
$$

Then

$$
x_{3}=27.8 / 4=6.95 \quad x_{2}=2.5 \quad x_{1}=-0.15
$$

3. Matrix Inversion By Gauss Method:

This method start with
a) $\left[\begin{array}{l|l}A & I\end{array}\right] \xlongequal{\text { Gauss Elim. }}\left[\begin{array}{ll|l}U \text { or } & L & \text { New matrix }\end{array}\right]$
b) Back substitution
c) $\left[\begin{array}{lll}U & \text { or } & L\end{array}\right] x_{1}=\left[\begin{array}{c}1^{\text {st }} \text { column of } \\ \text { New matrix }\end{array}\right] \Rightarrow$ First column of A^{-1}

$$
\left[\begin{array}{lll}
U \text { or } & L
\end{array}\right] x_{2}=\left[\begin{array}{c}
2^{\text {nd }} \text { column of } \\
\text { New matrix }
\end{array}\right] \Rightarrow \text { Second column of } A^{-1}
$$

Example: Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
-1 & 8 & -2 \\
-6 & 49 & -10 \\
-4 & 34 & -5
\end{array}\right]
$$

Solution:

$\left[\begin{array}{ccc|ccc}-1 & 8 & -2 & 1 & 0 & 0 \\ -6 & 49 & -10 & 0 & 1 & 0 \\ -4 & 34 & -5 & 0 & 0 & 1\end{array}\right] \stackrel{\text { G.E. }}{\Rightarrow}\left[\begin{array}{ccc|ccc}-1 & 8 & -2 & 1 & 0 & 0 \\ 0 & 1 & 2 & -6 & 1 & 0 \\ 0 & 0 & -1 & 8 & -2 & 1\end{array}\right]$
$\left[\begin{array}{ccc}-1 & 8 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & -1\end{array}\right] x_{1}=\left[\begin{array}{c}1 \\ -6 \\ 8\end{array}\right] \Rightarrow\left[\begin{array}{c}95 \\ 10 \\ -8\end{array}\right]$
$\left[\begin{array}{ccc}-1 & 8 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & -1\end{array}\right] x_{2}=\left[\begin{array}{c}0 \\ 1 \\ -2\end{array}\right] \Rightarrow\left[\begin{array}{c}-28 \\ -3 \\ 2\end{array}\right]$
$\left[\begin{array}{ccc}-1 & 8 & -2 \\ 0 & 1 & 2 \\ 0 & 0 & -1\end{array}\right] x_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \Rightarrow\left[\begin{array}{c}18 \\ 2 \\ -1\end{array}\right]$
Then
$A^{-1}=\left[\begin{array}{ccc}95 & -28 & 18 \\ 10 & -3 & 2 \\ -8 & 2 & -1\end{array}\right]$

4. Matrix Inversion By Gauss-Jordan Method:

In this method the matrix A is reduced to an identify matrix i.e.

Example: Find the inverse of the matrix

$$
\left[\begin{array}{lll}
4 & -9 & 2 \\
2 & -4 & 6 \\
1 & -1 & 3
\end{array}\right]
$$

Solution:

$\left[\begin{array}{l|l}A & I\end{array}\right] \Leftrightarrow\left[\begin{array}{lll|lll}4 & -9 & 2 & 1 & 0 & 0 \\ 2 & -4 & 6 & 0 & 1 & 0 \\ 1 & -1 & 3 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc|ccc}4 & -9 & 2 & 1 & 0 & 0 \\ 0 & 0.5 & 5 & -0.5 & 1 & 0 \\ 0 & 1.25 & 2.5 & -0.25 & 0 & 1\end{array}\right]$
$\left[\begin{array}{ccc|ccc}4 & 0 & 92 & -8 & 18 & 0 \\ 0 & 0.5 & 5 & -0.5 & 1 & 0 \\ 0 & 0 & -10 & 1 & -2.5 & 1\end{array}\right]$
$\left[\begin{array}{ccc|ccc}4 & 0 & 0 & 1.2 & -5 & 9.2 \\ 0 & 0.5 & 0 & 0 & -0.25 & 0.5 \\ 0 & 0 & -10 & 1 & -2.5 & 1\end{array}\right]$
$\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 0.3 & -1.25 & 2.3 \\ 0 & 1 & 0 & 0 & -0.5 & 1 \\ 0 & 0 & 1 & -0.1 & 0.25 & -0.1\end{array}\right] \Leftrightarrow\left[\begin{array}{ll|l} & & A^{-1} \\ & & \end{array}\right]$
Or $\quad A^{-1}=\left[\begin{array}{ccc}0.3 & -1.25 & 2.3 \\ 0 & -0.5 & 1 \\ -0.1 & 0.25 & -0.1\end{array}\right]$

5. Choleski's Decomposition Process

A square matrix A is expressed as the product of $L U$ i.e.

$$
[A]=[L][U]
$$

To find $[L]$ and $[U]$, the above matrices can be represented by:

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
1 & 0 & 0 \\
L_{21} & 1 & 0 \\
L_{31} & L_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
U_{11} & U_{12} & U_{13} \\
0 & U_{22} & U_{23} \\
0 & 0 & U_{33}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]} \\
{\left[\begin{array}{ccc}
U_{11} & U_{12} & U_{13} \\
L_{21} U_{11} & L_{21} U_{12}+U_{22} & L_{21} U_{13}+U_{23} \\
L_{31} U_{11} & L_{31} U_{12}+L_{32} U_{22} & L_{31} U_{13}+L_{32} U_{23}+U_{33}
\end{array}\right]=[A}
\end{array}\right] .
$$

From which;

$$
\begin{array}{ccc}
U_{11}=a_{11} & U_{12}=a_{12}, & U_{13}=a_{13} \\
L_{21}=\frac{a_{21}}{U_{11}}=\frac{a_{21}}{a_{11}}, & L_{31}=\frac{a_{31}}{U_{11}}=\frac{a_{31}}{a_{11}}, & U_{22}=a_{22}-L_{21} U_{12} \\
U_{23}=a_{23}-L_{21} U_{13} & L_{32}=\frac{\left(a_{32}-L_{31} U_{12}\right)}{U_{22}} & U_{33}=a_{33}-L_{31} U_{13}-L_{32} U_{23}
\end{array}
$$

And generally;
$U_{1 \mathrm{j}}=a_{1 \mathrm{j}}$
$L_{i 1}=a_{i 1} / U_{11}$
$U_{i j}=a_{i j}-\sum_{k=1}^{j-1} L_{1 k} U_{k j} \quad 1 \leq i \leq j$
$L_{i j}=\left(a_{i j}-\sum_{k=1}^{j-1} L_{1 k} U_{k j}\right) / U_{j j} \quad i \geq j>1$

Example: Express the following matrix in $L U$ form

$$
A=\left[\begin{array}{ccc}
4 & 3 & -2 \\
1 & 0 & 5 \\
2 & -3 & -4
\end{array}\right]
$$

Solution:

$$
A=\left[\begin{array}{ccc}
4 & 3 & -2 \\
1 & 0 & 5 \\
2 & -3 & -4
\end{array}\right] \xrightarrow{\text { resulting matrix }}\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 / 4 & 1 & 0 \\
1 / 2 & 6 & 1
\end{array}\right]\left[\begin{array}{ccc}
4 & 3 & -2 \\
0 & -3 / 4 & 11 / 2 \\
0 & 0 & -36
\end{array}\right]
$$

5.1. Application of Choleski's Decomposition to Solution of Simultaneous Linear Equations

If the matrix A is decomposes into $L U$ then any equation such as $[A][x]=[B]$, where A is a square matrix $(n \times n)$, can be written in the form.

$$
[L][U][x]=[B]
$$

Then the equations are solved as follows:

1. $[L][Y]=[B]$
2. $[U][x]=[Y]$

The second Eq. is written in the form;

$L_{11} Y_{1}$	$=B_{1}$
$L_{21} Y_{1}+L_{22} Y_{2}$	$=B_{2}$
$L_{31} Y_{1}+L_{32} Y_{2}+L_{33} Y_{3}$	$=B_{3}$

Which give the values of Y by forward substitution then the first Eq. can be written as
$U_{11} x_{1}+U_{12} x_{2}+\cdots+U_{1 n} x_{n}=Y_{1}$
$U_{22} x_{2}+U_{23} x_{3}+\cdots+U_{2 n} x_{n}=Y_{2}$

$$
U_{n n} x_{n}=Y_{n}
$$

Which give the value of x by backward substitution.
Example: Solve the following set

$$
\begin{aligned}
2 x_{1}+x_{3} & =4 \\
-3 x_{1}+4 x_{2}-2 x_{3} & =-3 \\
x_{1}+7 x_{2}-5 x_{3} & =6
\end{aligned}
$$

Solution:

The matrix form;

$$
\left[\begin{array}{ccc}
2 & 0 & 1 \\
-3 & 4 & -2 \\
1 & 7 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-3 \\
6
\end{array}\right]
$$

$[L][U][x]=[B]$ is

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1.5 & 1 & 0 \\
0.5 & 1.75 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 1 \\
0 & 4 & -0.5 \\
0 & 0 & -4.625
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-3 \\
6
\end{array}\right]
$$

$[L][Y]=[B]$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1.5 & 1 & 0 \\
0.5 & 1.75 & 1
\end{array}\right]\left[\begin{array}{l}
Y_{1} \\
Y_{2} \\
Y_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
-3 \\
6
\end{array}\right] \stackrel{\text { gives }}{\Longrightarrow} Y_{1}=4, \quad Y_{2}=3, \quad Y_{3}=-1.25
$$

$[U][x]=[Y]$

$$
\begin{aligned}
& \quad\left[\begin{array}{ccc}
2 & 0 & 1 \\
0 & 4 & -0.5 \\
0 & 0 & -4.625
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 \\
3 \\
-1.25
\end{array}\right] \\
& \therefore \quad x_{1}=\frac{69}{37}, \quad x_{2}=\frac{29}{37}, \quad x_{3}=\frac{10}{37}
\end{aligned}
$$

5.1. Matrix Inversion by Choleski's Decomposition

Example: Find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
0.7 & -5.4 & 1.0 \\
3.5 & 2.2 & 0.8 \\
1.0 & -1.5 & 4.3
\end{array}\right]
$$

$[A][x]=[B] \quad$ Where $[B]$ is the identity matrix.
The resulting $L U$ matrices are

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
5 & 1 & 0 \\
1.0 & 0.213 & 1
\end{array}\right]\left[\begin{array}{ccc}
0.7 & -5.4 & 1.0 \\
0 & 29.2 & -4.2 \\
0 & 0 & 3.75
\end{array}\right]
$$

$[L][Y]=[B] \quad$ Will be

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
5 & 1 & 0 \\
1.0 & 0.213 & 1
\end{array}\right]\left[\begin{array}{lll}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23} \\
Y_{31} & Y_{32} & Y_{33}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

This gives the values of $[Y]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -5 & 1 & 0 \\ -0.38 & -0.21 & 1\end{array}\right]$
And $[U][x]=[Y]$ becomes

$$
\left[\begin{array}{ccc}
0.7 & -5.4 & 1.0 \\
0 & 29.2 & -4.2 \\
0 & 0 & 3.75
\end{array}\right]\left[\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-5 & 1 & 0 \\
-0.38 & -0.21 & 1
\end{array}\right]
$$

Which gives complete values of $[x]$

$$
\left[\begin{array}{ccc}
0.11 & 0.32 & -0.08 \\
-0.19 & 0.03 & -0.04 \\
-0.1 & -0.06 & 0.27
\end{array}\right] \Rightarrow[A]\left[\begin{array}{c}
\\
x
\end{array}\right]=\left[\begin{array}{ccc}
1.003 & 0.002 & -0.02 \\
-0.113 & 1.138 & 0.024 \\
0.035 & 0.017 & 1.021
\end{array}\right]
$$

(B) Iterative Methods:

1.Jacobi Iteration Method: Also called simulation displacement.

Consider the system;
$a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1}$
$a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}$
\vdots
$a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}$
Which are arranged for solution in the form;
$x_{1}=\frac{1}{a_{11}}\left\langle b_{1}-a_{12} x_{2}-a_{13} x_{3}-\cdots-a_{1 n} x_{n}\right\rangle$
$x_{2}=\frac{1}{a_{22}}\left\langle b_{2}-a_{21} x_{1}-a_{23} x_{3}-\cdots-a_{2 n} x_{n}\right\rangle$
!
$x_{n}=\frac{1}{a_{n n}}\left\langle b_{n}-a_{n 1} x_{1}-a_{n 2} x_{2}-\cdots-a_{n(n-1)} x_{n-1}\right\rangle$
For initial guesses put all ($x^{\prime} s$) zero
Noted as $x_{1}^{(1)}, x_{2}^{(1)}, x_{3}^{(1)}, \ldots, x_{n}^{(1)}$ and substitution them into the right side of the above equation, a new set $x_{1}^{(2)}, x_{2}^{(2)}, x_{3}^{(2)}, \ldots, x_{n}^{(2)}$ can be calculated.

Example: Solve the following set

$$
\begin{gathered}
3 x_{1}+x_{2}+x_{3}=10 \\
x_{1}+5 x_{2}+2 x_{3}=21 \\
x_{1}+2 x_{2}+5 x_{3}=30
\end{gathered}
$$

Solution:

$x_{1}^{n}=\frac{1}{3}\left(10-x_{2}^{(n-1)}-x_{3}^{(n-1)}\right)$
$x_{2}^{n}=\frac{1}{5}\left(21-x_{1}^{(n-1)}-2 x_{3}^{(n-1)}\right)$
$x_{3}^{n}=\frac{1}{5}\left(30-x_{1}^{(n-1)}-2 x_{2}^{(n-1)}\right)$
$x_{1}^{(1)}=\frac{b_{1}}{a_{11}}=\frac{10}{3}$
$x_{2}^{(1)}=\frac{b_{2}}{a_{22}}=\frac{21}{5}$
$x_{3}^{(1)}=\frac{b_{3}}{a_{33}}=\frac{30}{5}$
$x_{1}^{(2)}=\frac{1}{3}\left(10-\frac{21}{5}-\frac{30}{5}\right)=-0.067$
$x_{2}^{(2)}=\frac{1}{5}\left(21-\frac{10}{3}-2 * \frac{30}{5}\right)=1.133$
$x_{3}^{(2)}=\frac{1}{5}\left(30-\frac{10}{3}-2 * \frac{21}{5}\right)=3.653$

Continue till
$x_{1}^{(17)}=1.001, x_{2}^{(17)}=2.001, x_{3}^{(17)}=5.001$
And $x_{1}^{(18)}=0.999, x_{2}^{(18)}=2.000, x_{3}^{(18)}=5.000$
2. Gauss-Seidel Iteration Method: To compare with the previous example, rearrange the equation

$$
\begin{aligned}
& x_{1}^{n}=\frac{1}{3}\left(10-x_{2}^{(n-1)}-x_{3}^{(n-1)}\right) \\
& x_{2}^{n}=\frac{1}{5}\left(21-x_{1}^{(n)}-2 x_{3}^{(n-1)}\right) \\
& x_{3}^{n}=\frac{1}{5}\left(30-x_{1}^{(n)}-2 x_{2}^{(n)}\right) \\
& x_{1}^{(1)}=\frac{b_{1}}{a_{11}}=\frac{10}{3} \\
& x_{2}^{(1)}=\frac{b_{2}}{a_{22}}=\frac{21}{5} \\
& x_{3}^{(1)}=\frac{b_{3}}{a_{33}}=\frac{30}{5}
\end{aligned}
$$

Substitution in the arranged equation
$x_{1}^{(2)}=\frac{1}{3}\left(10-\frac{21}{5}-\frac{30}{5}\right)=-0.067$
$x_{2}^{(2)}=\frac{1}{5}\left(21+0.067-2 * \frac{30}{5}\right)=1.813$
$x_{3}^{(2)}=\frac{1}{5}(30+0.067-2 * 1.813)=5.288$
And so on till
$x_{1}^{(6)}=1.001, x_{2}^{(6)}=2.000, x_{3}^{(6)}=5.000$
And $x_{1}^{(7)}=1.000, x_{2}^{(7)}=2.000, x_{3}^{(7)}=5.000$
H.W: Solve the set using;

1. Jacobi Iteration method
2. Gauss-Seidel Iteration method

$$
\begin{aligned}
& 10.27 x_{1}-1.23 x_{2}+0.67 x_{3}=4.27 \\
& 2.39 x_{1}-12.62 x_{2}+1.13 x_{3}=1.26 \\
& 1.79 x_{1}+3.61 x_{2}+15.11 x_{3}=12.71
\end{aligned}
$$

