

Al-Furat Al-Awsat Technical University- Najaf Tech. Eng. College

Subject : Mathematics II

Units: 6

Weekly Hours: Theoretical: 3

week	Syllabus
1-5	 Coordinate systems, Cartesian, and polar Polar coordinate system, Polar functions and polar equations, graph. Polar equation of conic section and other curves. The angle between radius vector and tangent line. Arc length and plane area in polar coordinate system.
6-10	 Vector and vector analysis Vector definition and the unit vectors (i,j and k) Space coordinate (Cartesian cylindrical, and spherical coordinate systems) Vector algebra (vector operation) Equation of line and plane. Cylinders and quadric surfaces. Vector functions, definitions, limit, and continuity. Derivative of a vector function. Tangent vector, curvature, normal vector, and radius of curvature.
11-15	 Partial differential equations. Function of two or more variables. Definition of partial derivative

	The directional derivative
	Tangent plane and normal line,
	• Approximate value of W, W=f(x,y)
	• The gradient, chain rule, total differential, exact differential.
	Maximum and minimum of functions.
	Lagrange multiplier.
	High order derivative.
	Multiple integral
	Double integrals
	Area and double integrals
	Physical applications
16-20	Polar coordinate system
	Triple integrals
	Volume, physical applications of triple integral.
	Cylindrical and Spherical coordinate
	• Surface area.
	Ordinary differential equations (O.D.E's)
	Definition, order, degree, solution
	• First order – first degree D.E. (Separable, Homogeneous, Linear, and Exact)
21-25	• Special types of second order D.E.
21-23	• Linear D.E. with constant coefficients
	• Linear 2 nd order non-homogeneous D.E. with constant coefficients, method
	of variation of parameters, method of undetermined coefficient.
	High order linear D.E. with constant coefficients.
	Infinite series
	minine series
	• Sequences
	Certain limits
26-30	• Infinite series, definition, convergence, divergence, and the sum of the series.
	• Test of convergence (comparison, integral ratio, root, and other test)
	Alternating series
	Absolute and conditional convergence
	Power series of functions
	Maclaurin & Tylor series, Tylor theory.

Al-Furat Al-Awsat Technical University- Najaf Tech. Eng. College

Subject: Instrument and Measurements

Units: 4

Weekly Hours: Theoretical: 2

week	Syllabus
	Basic concepts of measurements
1-4	 Introduction Measurements and units. Units obtained from SI unit system Multiple and sub-multiples for SI units Definitions Systems configuration Basic elements of measuring devices. Classification of errors. Random errors. Other sources of errors. Unit conversion.
5-7	 Electrical measuring instruments Absolute instrument Secondary instrument Electrical principle of operation. Indicating instrument Torque Controlling torque. Deflecting torque Damping torque

	Moving iron instrument
8-9	Source of error in moving
	• Iron instrument
	Moving coil instrument
	 Extension of range
	Ammeter
10-13	• Voltmeter
	Dynamometer type
	- Dynamometer as ammeter
	- Dynamometer as voltmeter
	Resistance and measurements
	Bridge method
14-16	Wheatstone bridge method
	• Cary – Foster (slide – wire) method
	Kelvin bridge method
	Ohmmeter method of resistance measurements
17-19	• shunt type
	• series type
20-22	Mega Ohmmeter (Megger)
23-25	
23-23	
	Measurement of system dynamics
26-28	• Force function
	• Zero – order system
	• First – order system
	• Second – order system
	Measurement of power (wattmeter)
29-30	wattmeter method
	wattmeter method

Al-Furat Al-Awsat Technical University- Najaf Tech. Eng. College

Subject : Electronics I

Units: 6

Weekly Hours: Theoretical: 2

week	Syllabus
1-4	 p-n junction Introduction to p-n junction Diode applications Rectifiers Clipping and clamping Zener diode
5-10	Transistor circuits Biasing of transistor Configuration of transistor Equivalent circuit of transistor Graphical analysis Operating point of transistor DC & AC load line of Transistor Bias stability Quiescent point operation Effect of temperature on Q-point. Stability factor analysis Temperature compensation using diode biasing Thermal consideration in Tr.Amp.

11-15	 Transistor amplifier Common – Base transistor amplifier Common emitter transistor amplifier Common collector transistor amplifier.
16-20	 h-parameter of transistor Common – base transistor Common – emitter transistor Common – collector transistor
21-25	Classes of Amplifiers Class A amplifier Class B amplifier Class C amplifier Class D amplifier
26-30	The Field effect transistor: Theory of JFET & MOSFET P-channel FET FET amplifier FET switch

Al-Furat Al-Awsat Technical University- Najaf Tech. Eng. College

Subject : Geometrical Optics

Units: 6

Weekly Hours: Theoretical: 2

week	Syllabus
1-10	GEOMETRICAL OPTICS Introduction Paraxial Approximation Ray Matrix Approach to Gaussian Optics The Lens Matrix Ray Transformation between Principal Planes Image Formation Ray Tracing Ray Matrix for Reflection Apertures and Stops Two-Lens Optical Systems Optics of a Laser Cavity Optics of the Human Eye Defects of the Human Eye Cylindrical Lens
11-15	LENS ABERRATIONS • Stigmatic Image • Aplanatic Points • Image Formation with Non-paraxial Rays • Wave front Aberration Function

	Ray Deviations
	 Focusing Errors
	INTERFERENCE OF LIGHT WAVES
	• Interference
4 4 5 0	• Two-Wave Interference
16-20	Interference by Division of Wavefront
	Interference by Division of Amplitude
	• Testing Flatness of Surfaces
	Interference with Extended Sources
	FRINGES & INTERFEROMETER
	Haidinger Fringes
	Fizeau Fringes
	Newton's Rings
	Straight Fringes
	Two-Wave Interferometers
	Michelson Interferometer
	Mach–Zehnder Interferometer
21-30	Multi-wave Interference
	Fabry–Perot Interferometer
	Widths of Transmission Peaks
	Fabry–Perot Interferometer as a Spectrometer
	Free Spectral Range
	Spectral Resolution
	Thin Optical Coatings
	• Interference filter

Al-Furat Al-Awsat Technical University- Najaf Tech. Eng. College

Subject : Thermodynamics

Units: 4

Weekly Hours: Theoretical: 2

week	Syllabus
1-2	Definitions: force, pressure, systems, atmospheric pressure, absolute pressure, pressure units.
3-5	Temperature: units, conversion, methods of temperature measuring, zero law, energy definition, types of energy: potential energy, kinetic energy, work, power, and pressure diagram.
6-7	Internal energy, Enthalpy, first law of thermodynamics. Systems energy equation: open systems, close systems, applications.
8-10	Ideal gas, Boil's law, Charles's law, equation of state. Specific heat at constant pressure, specific heat at constant temperature. Processes of closed systems, volume constant and pressure constant.
11-15	(T-V) diagram, Polytropic process (P-V & P-T) diagrams. Open system procedures. Vapor, matter and phase changing and phase changing on (P-V) diagram.
16-20	Volume fraction – liquid line – vapor line – wet vapor. Saturated vapor, second law of thermodynamics, thermal machine and thermal pump.
21-24	Carnot's cycle and inverse Carnot's cycle, Reverse and inverse procedures. Definition of 2 nd law in thermodynamics, Entropy and gas entropy calculations, T-S diagram.
25-28	Entropy computation of vapors. Entropy of system and its surrounding environment. Adiabatic efficiency.
29-30	Standard air cycles, Auto-Cycle, Diesel cycle, Diol Cycle.

Al-Furat Al-Awsat Technical University- Najaf Tech. Eng. College

Subject : Wave Propagations

Units: 4

Weekly Hours: Theoretical: 2

week	Syllabus
1-2	Definitions: force, pressure, systems, atmospheric pressure, absolute pressure, pressure units.
3-4	Standing wave, Energy of standing waves and Wave propagation in free space
5-8	Wave propagation in dielectrics, the pointing vector and power considerations.
9-11	Propagation in good conductors: skin effect.
12-15	Polarization, wave polarization
16-20	Radio wave propagation, Light wave propagation.
21-23	Radio wave propagation in vacuum and in matter, attenuations and damping factors.
24-27	Electromagnetic wave propagation in vacuum and matters, reflections, refractions, and scattering. Riely Scattering, Raman scattering.
28-30	Light wave propagation in free space, Laser light propagation in free space and in matter, gain, losses, reflection, refraction, and scattering.

Al-Furat Al-Awsat Technical University- Najaf Tech. Eng. College

Subject : Laser Principles

Units: 6

Weekly Hours : Theoretical : 2

week	Syllabus
1-3	 Light and Blackbody Emission Emission of Thermal Light Electromagnetic Spectrum Blackbody Radiation and the Stefan –Boltzmann Law Wein's Law Cavity Radiation and Cavity Modes Quantum Nature of Light Absorption and Emission Processes Boltzmann Distribution and Thermal Equilibrium
4-7	 Atomic Emission Line Spectra Spectroscope Einstein and Planck: E = hθ Photoelectric Effect Atomic Models and Light Emission Franck –Hertz Experiment Spontaneous Emission and Level Lifetime Fluorescence

	Semiconductor Devices
	Light-Emitting Diodes
	Lasing Processes
8-15	 Characteristics of Coherent and incoherent Light Boltzmann Distribution and Thermal Equilibrium Creating an Inversion Stimulated Emission Rate Equations and Criteria for Lasing Laser Gain Linewidth Thresholds for Lasing Calculating Threshold Gain Selective Pumping Three- and Four-Level Lasers CW Lasing Action Thermal Population Effects
	Population inversion and depopulation of low energy level in three and four level systems. Rate Equation Analysis for Atomic Transitions, Rate Equation Analysis for Three- and Four-Level Lasers, Gain, Saturation. Required Pump Power and Efficiency. Output power.
	Cavity Optics
19-25	 Requirements for a Resonator Gain and Loss in a Cavity Resonator as an Interferometer Longitudinal Modes Wavelength Selection in Multiline Lasers Single-Frequency Operation Characterization of a Resonator Gaussian Beam Resonator Stability Common Cavity Configurations Spatial Energy Distributions: Transverse Modes

	Limiting Modes
	Resonator Alignment: A Practical Approach
	Fast-Pulse Production
26-30	 Concept of Q-Switching Intracavity Switches Energy Storage in Laser Media Pulse Power and Energy Electro-optic Modulators Acousto-optic Modulators Cavity Dumping Mode locking
	Mode locking in the Frequency Domain

Al-Furat Al-Awsat Technical University- Najaf Tech. Eng. College

Subject : Electromagnetic Fields

Units: 4

Weekly Hours: Theoretical: 2

week	Syllabus
1-4	Vector analysis Scalar and vector Vector algebra The Cartesian coordinate system Vector components and unit vector Vector field The Dot product The cross product Polar coordinate system
5-15	 Electric Field Coulomb's law The experimental law of coulomb Electric field intensity Field of line charge Field of a sheet charge Stream lines and sketches of field Electric flux density Gauss's law

	• Integral form of Gauss's law
	• Differential form of Gauss's law
	Divergence theorem
	• Stock's theorem
	Maxwell's first equation
	• The vector operator V and the divergence theorem
	The Line integral
	Potential and potential difference
	Potential field of a point charge
	 Potential field of a system of charges: conservative property
	Potential gradient
	• The dipole
	Energy density in the electrostatic field
	 Poisson's and Laplace's equations
16-30	The magnetic field.
	Steady magnetic field
	• Biot – Savart law
	Ampere's Circuital law
	• Curl
	• Stocke's theorem
	Magnetic flux and magnetic flux density
	Scalar and vector magnetic potential.
	Other Maxwell's equations

Al-Furat Al-Awsat Technical University- Najaf Tech. Eng. College

Subject : Visual Basic

Units: 4

Weekly Hours : Theoretical : 1
Experimental: 2

week	Syllabus
1	Introduction to visual basic: Integrated development Environment.
2-3	 Basic definition: Application, Code, Controls, Declaration, Procedure, Object, Property Event procedure, method, form, Class, modules.
4-8	 Common properties: name, position, size. Font, container font, color, other properties. common method: move, et foucs, z order, refresh examples with command button, text and label common events mouse events, keyboard events and Examples and application code
9-19	 Variables a) Use variables for input box b) Use variables for msg box c) Data type Constants Basic and advance mathematical parameters Mathematical functions Convert the mathematical equations to code Examples

	Arrays and their declaration with application
	• if then procedure with application on checkbox and option Buttons
20-30	 procedure of for~ next, do~ loop, do~ while, do~ until, While ~ wend timer tools and examples subroutine, functions, sub and their calling V-scrollbar and H-scrollbar with application Examples of scrollbar and sub, subroutine, function drawing in visual basic, pset, line, circle, print, Cls, Scale line chart, bar chart and Examples
	• line chart, bar chart and Examples