

LABORATORY PLANNING GUIDE

L10 Strength of Materials Laboratory

<u>Content</u>

Covered subjects according to the curriculum	2
Main concept	3
Initial training provided for laboratory personnel	3
Requirements / Utilities	3
Schedule of requirements	4
Laboratory drawing	4

G.U.N.T. Gerätebau GmbH, Hanskampring 15-17, 22885 Barsbüttel, Germany Phone: +49 40 670854-0, E-mail: <u>sales@gunt.de</u>, Web: <u>www.gunt.de</u>

Covered subjects according to the curriculum

Major topics of learning content:

- Elastic deformation of statically determinate or indeterminate beams under bending load
- Elastic torsion of round bars under torque
- Influence of material, cross-section and clamping length on deformation
- Investigation of all relevant buckling problems
- Verification of the Euler theory of buckling
- Methods of force and deflection measurement
- Eccentric application of force and transverse loading
- Verification of the Rankine yield criterion and the Tresca yield criterion
- Multi-axial loading by pure bending, pure torsion or a combination of the two
- Deformation of a beam on two or more supports under point loads (e.g. single-span beam)
- Deformation of a cantilever beam under point loads
- Maxwell-Betti coefficients and law
- Application of the method of sections to determine internal reactions of the beam
- Direct indication of shear force and bending moment at a section on the beam
- Basic introduction to measurement with strain gauges
- Strain gauge types and application techniques
- Photoelastic experiments on models subjected to mechanical loading
- Investigation of diffusion of stresses with plane or circular polarised light
- Interpretation of photoelastic fringe patterns
- Elastic deformation of curved-axis beams (circular, semi-circular and quadrant beams)
- Elastic behaviour of tension springs under load
- Hooke's law

Main concept

The laboratory is designed for accommodation of 24 students + 2 laboratory staff:

- 2 4 students form a team and work together at a workstation / training system
- 28 workstations with 9 different experiment units
- Each experiment unit on its own table to allow short prepare times
- Each workstation is equipped with a manual containing technical information, basic theory, experiment instructions, evaluation help and safety advice.
- Student teams are scheduled to change workstations from lab session to lab session in order to perform the entire range of experiments within the course duration.
- Average time per experiment: 90 to 120 minutes.
- 2 workstations for laboratory staff (with PC and internet access)
- 1 printer for common use
- 1 cupboard for small parts, consumables, tools, paper etc.

Initial training provided for laboratory personnel

Trainer: Specialized engineer of G.U.N.T. Gerätebau GmbH, Germany.

To be conducted immediately after installation and commissioning of the equipment. General topics to be covered for any of the educational systems:

- Basic familiarization with the system.
- Functions and components.
- Overall system configuration aspects.
- Start-up and operational aspects.
- Conduction experiments, including evaluation and calculation.
- Using the system with and without the software (where applicable).
- Trouble shooting and maintenance aspects.
- Hands-on, practical familiarization aspects.
- Seminar participants with the delivered system.
- Details of the manuals.
- Safe operation and preventive maintenance.

Requirements / Utilities

Power supply:

 230 V / 50 Hz / 1 phase – at least 10 power sockets distributed according to lab layout.

Laboratory computer network:

- 2 internet connections for staff Location:
- Laboratory space min 120 m²
- This laboratory could be installed on any floor (e.g. ground floor or 1st floor)

Schedule of requirements

Item No.	Description	Code	Quantity
ltem 1	Deformation of bars under bending or torsion	WP 100	4 pcs.
Item 2	Buckling behaviour of bars	WP 120	4 pcs.
Item 2.1	Set of 10 specimens	WP 120.01	4 pcs.
Item 3	Verification of stress hypotheses	WP 130	4 pcs.
Item 3.1	Set of 4 specimens alum., copper, steel brass, 1 each	WP 130.01	4 pcs.
Item 4	Deformation of straight beams	WP 950	3 pcs.
Item 5	Beam on 2 supports: shear force & bending moment diagrams	WP 960	3 pcs.
Item 6	Strain gauge training system	FL 100	3 pcs.
Item 6.1	Tension rod, brass	FL 100.01	1 pcs.
Item 6.2	Tension rod, copper	FL 100.02	1 pcs.
Item 7	Photoelastic experiments with a transmission polariscope	FL 200	3 pcs.
Item 8	Deformation of curved-axis beams	FL 170	3 pcs.
Item 9	Hooke's law	TM 400	1 pcs.

Laboratory drawing

