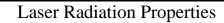


Subject : Numerical analysis and Engineering Units: 4 Weekly Hours : Theoretical : 2 Experimental: –

week	Syllabus
1-6	 Laplace Transformation Properties, Forward and Inverse transformation and associated theorems. Convolution and Translation and their properties. Solving differential equations using Laplace transformation. Applications
7-12	 General power series methods Convergence of the power series. Solution of differential equations Legendre equation, Legendre polynomials. Bessel equation, Bessel functions
13-18	 Function of complex variables. Cartesian and polar coordinates of complex numbers. Analytical function, Cauchy-Riemann equations. Cauchy integral theorem. Integration in the complex plane.
19-24	 Matrix Theory Definitions, Ad joint, Inverse of a matrix, sum and multiply of matrices. System of linear equations. Characteristic equation, Eigen values and Eigen vectors


	Matrix differential equations
25-30	 Fourier series and Transformation Derivation of Fourier series Odd and Even Functions Half-wave Fourier series Frequency spectra of different time functions, Fourier transformation Applications

Subject : Laser physics Units: 4 Weekly Hours : Theoretical : 2 Experimental: –

week	Syllabus
1-10	 Laser Gain Fluorescence line shape of the laser Fluorescence linewidth. Mathematical expressions of fluorescence linewidth Laser Gain curve Broadening the fluorescence line. Natural broadening. Doppler broadening. Pressure broadening Loop Gain. Calculating loop gain (GL) without losses. Calculating loop gain (CL) with losses. Calculating gain threshold (GL)th. Hole Burning in the laser gain curve Active medium gain with lasing and without - Hole Burning Saturation gain in a continuous wave laser Gain and Output power of CW laser Continuous wave laser Pulsed laser Pulse shape out of a pulsed Ruby laser.

- Radiometry and units measuring electromagnetic radiation.
- Spatial distribution of the emitted radiation at the output coupler.
- Transverse electromagnetic modes of the laser radiation.
- Gaussian Laser Beam.
- Beam Divergence.
- Divergence Angle.
- Near field and far field.
- Rayleigh range and Gaussian beam divergence
- Diffraction through a circular hole.
- Fresnel number.
- Beam focusing.
- 11-20 Characteristics of Laser Radiation Pulses
 - Single pulse of laser radiation.
 - Excitation of the laser with pulsed energy.
 - Different types of pulses.
 - Special mechanisms for creating short pulses
 - Control of the duration of the laser radiation pulse by the excitation Mechanism
 - Q-switched lasers.
 - Q (Quality) factor.
 - Q switch
 - Different methods for Q Switching
 - Cavity Dumped Lasers
 - Mode-Locked Lasers

	Controlling the laser radiation properties
	 Controlling the transverse optical modes of the beam.
	 Some common laser resonators
	• Plane-plane optical cavity.
21-30	• Circular mirrors with large radius of curvature.
	Confocal optical cavity
	Circular optical cavity
	Half circular optical cavity.
	• Unstable optical cavity.
	• Controlling the wavelength spectrum emitted from the laser Selective
	excitation of the active medium.
	• Selective coating on the cavity mirrors.
	• Special optical element inside the optical cavity
	• Prism.
	Diffraction Grating
	• Etalon

Subject : Electronics II & Wireless communication systems Units: 6 Weekly Hours : Theoretical : 2

Experimental: 2

week	Syllabus
1	Introduction: Communication and propagation systems
2-10	Modulation Analogue Modulation AM Modulation FM Modulation PM Modulation Digital Modulation systems Pulse modulation systems (PM) A/D and D/A convertors PCM TDM FDM ASK FSK FSK PSK PSK BPSK
11-15	NoiseExternal noise figureInternal noise figure

	 Maximum power transfer SN ratio Nosie figure and noise factor Noise temperature Carrier to noise ratio BER
16-20	Transistor and amplifiers properties
20-25	Rectifier, Thyristor, and trigger
25-30	Power supply, generator, and Max generator

Subject : Power electronics Units: 4 Weekly Hours : Theoretical : 2 Experimental: –

week	Syllabus
1	Introduction
2-5	 Power Electronics Defined and power diodes Key Characteristics Trends in Power Supplies Conversion Examples Tools For Analysis and Design Diode as a Switch Some Properties of PN Junction Common Diode Types Typical Diode Ratings Snubber Circuits for Diode Series and Parallel Connection of Power Diodes Typical Applications of Diodes
6-10	 Thyristors and Gate Trun-OFF Thyristors Basic Structure and Operation Static Characteristics Dynamic Switching Characteristics Thyristor Parameters Types of Thyristors Gate Drive Requirements PSpice Model Gate Turn-Off Thyristors; Basic Structure and Operation GTO Thyristor Models Static Characteristics Switching Phases SPICE GTO Model

	Power Bipolar Transistors
	Basic Structure and Operation
	Static Characteristics
	Dynamic Switching Characteristics
	Transistor Base Drive Applications
	SPICE Simulation of Bipolar Junction Transistors
	BJT Applications
11-20	• The Power MOSFET
	The Need for Switching in Power Electronic Circuits
	General Switching Characteristics
	• The Power MOSFET
	MOSFET Structure
	MOSFET Regions of Operation
	MOSFET PSPICE Model
	Comparison of Power Devices
	Insulated Gate Bipolar Transistor
	Basic Structure and Operation
	Static Characteristics
	Dynamic Switching Characteristics
	IGBT Performance Parameters
21-30	Gate-Drive Requirements
21-30	Circuit Models
	MOS Controlled Thyristors (MCTs)
	Equivalent Circuit and Switching Characteristics
	Comparison of MCT and Other Power Devices
	• Gate Drive for MCTs
	• Protection of MCTs.
	Generation-1 and Generation-2 MCTs
	N-channel MCT
	Base Resistance-Controlled Thyristor
	MOS Turn-Off Thyristor
	Applications of PMCT

Subject : Semiconductors Units: 4 Weekly Hours : Theoretical : 2 Experimental: –

week	Syllabus
1	Introduction
2-10	 Energy bands in typical semiconductors Structure of atom. Degeneracy of energy levels in free atoms Formation of energy bands in crystals Filling of energy bands by electrons Division of solids into conductors , semiconductors and Insulators Bad structure of semiconductors Free electrons and holes concentrations in semiconductors Types of semiconductors (doping) Intrinsic semiconductors (doping) The general equations of intrinsic and Extrinsic semiconductor Semiconductor in Equilibrium Non- Equilibrium Excess carriers in Semiconductor Fermi-level in semiconductor Movement of change carrier in semiconductor (majority and minority carriers) Hall effect and carrier density

	• Elementary transport in semiconductors.
	• Electric field transport.
	• Mobility
	Conduction by diffusion
	Carrier lifetime
	diffusion length
11-20	Contact phenomena
	• Electron-Hole junction.
	• Methods of producing pn junction.
	• Equilibrium state of a pn junction.
	• Rectifying properties a pn junction.
	• Breakdown of a pn junction.
	Semiconductor diode
	• P-N junction Zero applied bias.
	• P-N junction forward biasing.
	• P-N junction reverses biasing.
	• V/I characteristics of diode.
	• Current components in a pn junction.
	• Load Line.
21-25	Linear diode model equivalent circuit.
	• Zener diode
	• Zener Breakdown.
	Avalanche Breakdown.
	• Transistor
	• Junction transistor.
	Bipolar transistor.
	• Field effect transistor (JFET ,MOSFET[DE-MOSFET,EMOSFET])

	• Measuring the electromagnetic spectrum,
	Photo detectors
	Vacuum photodetectors
26-30	Semiconductor detectors
	P-N photodetectors
	• P-i-N diodes
	Avalanche photodiode
	Basic principle of photo detector
	Detector arrays
	CCD detector

Subject : Materials & Spectroscopy Units: 4 Weekly Hours : Theoretical : 2 Experimental: –

week	Syllabus
1	Introduction
2-15	 Adiabatic Approximation and the Concept of Molecular Potentials Quantum-Mechanical Description of Free Molecules Separation of Electronic and Nuclear Wavefunctions Born-Oppenheimer Approximation Adiabatic Approximation Potentials, Curves and Surfaces, Molecular Term Diagrams and Spectra Electronic States of Diatomic Molecules Exact Treatment of the Rigid H⁺₂ Molecule Classification of Electronic Molecular State Energetic Ordering of Electronic States Symmetries of Electronic Wavefunction

	Electronic Angular Momenta
	Electron Configurations and Electronic States
	The Approximation of Separated Atom
16-30	The "United Atom" Approximation
	• Approximation Methods for the Calculation of Electronic Wavefunction
	• The H2 Molecule
	Quantum-mechanical Treatment
	Rotation of Diatomic Molecules
	• The Rigid Rotor
	Centrifugal Distortion
	The Influence of Electron Rotation
	Molecular Vibrations
	The Harmonic Oscillator
	Vibration-Rotation Interaction
	The material structure
	• PN junction
	• P-I-N junction
	Hetero junction structure
	• Alloys

Subject : Quantum mechanics Units: 4 Weekly Hours : Theoretical : 2 Experimental: –

week	Syllabus
1	Introduction
2-10	 The structure of matter Length scales from cosmology to elementary particles States of matter Elementary constituents The fundamental interactions Black-body radiation The photoelectric effect Wave-particle duality Wave quantisation Heisenberg uncertainty principle Schrödinger's equation Expectation values and the momentum operator Some properties of Wavefunctions The variational principle
11-20	 Energy levels Energy levels in classical mechanics and classical models of the atom The Bohr atom

	 Orders of magnitude in atomic physics Hilbert spaces of finite dimension Linear operators on H Linear, Hermitian, unitary operators Projection operators and Dirac notation Unitary operators and Hermitian operators Operator-valued functions
21-30	 Dirac – Delta function One dimensional Dirac – Delta function Helm Holts theorem Potentials

Subject : Microprocessors Units: 6 Weekly Hours : Theoretical : 4 Experimental: -

week	Syllabus
1	Introduction
2-10	 Architecture of 8085 microprocessor: Block diagram; registers ALU; control unit. Instructions set and programming of 8085 microprocessors Stack and Subroutine
11-20	 Time delay and Counters Interrupts Addressing modes Pin out of 8085 microprocessor, Buses system, and Control signals.
21-30	 Memories: Type of memory; storage element; memory addressing multi chips memory. fetch and execute cycle Interfacing I/O devices 8086 microprocessor: Block diagram; architecture; registers; pin out; Introduction to programming.

Subject : Computer Applications Units: 4 Weekly Hours : Theoretical :1 Experimental: 2

week	Syllabus
1	Introduction
2-15	Mat lab Design
16-30	Programming with C++ language