
TRANSMISSION LINE THEORY 

(TEM Line) 

A uniform transmission line is defined as the one 

whose dimensions and electrical properties are 

identical  at all planes  transverse to the direction of 

propagation. 

 

Circuit Representation of TL’s 

A uniform TL may be modeled by the following circuit 

representation: 

 

 

 

 



 

R: Series resistance per unit length of line (for both 

conductors (ohm/m)). 

L: Series inductance per unit length of line (Henry/m). 

G: Shunt conductance per unit length of line (mho/m). 

C: Shunt capacitance per unit length of line (Farad/m). 

The line is pictured as a cascade of identical sections, 

each of z long. 

Since z can always be chosen small compared to the 

operating wavelength, an individual section of line may 

be analyzed using ordinary ac circuit theory. In the 

following analysis, we let 0z  , so the results are 

valid at all frequencies (hence for any physical time 

variation).  

Applying the Kirchhoff’s voltage law to the line section 

gives: 
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Letting 0z  , we get, 
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Now applying Kirchhoff’s current law to the line 

section gives:

     
( , )

( , ) , ( , )
v z z t

i z t G z v z z t C z i z z t
t

 
      

  

Rearranging yields: 

( , ) ( , ) ( , )
( , )

i z z t i z t v z z t
G v z z t C

z t

   
   

   

Letting 0z   
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Then the time domain TL or telegrapher equations are: 
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The solution of these equations, together with the 

electrical properties of the generator and load, allow 

us to determine the instantaneous voltage and current 

at any time t  and any place z along the uniform TL. 

Lossless Line: For the case of perfect conductors (R=0) 

and insulators (G=0), the telegrapher equations reduce 

to the following form: 
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Or,  



2 2

2 2

2 2

2

( , ) ( , )
0

( , ) ( , )
0

v z t i z t
LC

z t

i z t i z t
LC

z t

 
 

 

 
 

 
 

Wave equation’s for voltage and current on a lossless 

TL. 

Although real lines are never lossless, lolessness 

approximation for practical TL’s is very usefull. 

 

 

TRANSMISSION LINES WITH SINUSOIDAL EXCITATION 

We will only consider the sinusoidal steady-state 

solutions. 

Transmission-Line Equations: 

Under sinusoidal steady state conditions, the TL 

equations take the form: 
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Where ( )V z and ( )I z are voltage and current phasors. 

The real sinusoidal voltage and current waveforms are 

obtained from: 
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Wave Propagation on a TL 

The second order differential equations for ( )V z and 

( )I z are: 
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  complex propagation constant. 

  attenuation constant (Np/m). 

 phase constant (rad/m). 

 

 


