

年

-1

(1)

$$
r \cdot \mid y-r \cdot 17
$$

Answer all Questions

Q1:// Find the equivalent resistance looking in at terminals a-b in the circuit in Fig l?

Q2;// Obtain the equivalent resistance in each of the circuits of Fig. 2 In (b), all resistors have a value of
30 ?.

(a)

Q3;//Find in the eight -way power divider circuit in fig . Assume each element is 1 ?

Q4:// Find the branch currents of the network of Fig bellow ?

Q5:// Write the mesh equations for each of the networks of Fig bellow

15M

drat Al-Awsat Technical University technical Engineering College
Department of Engineering Techniques Aviation

Subject: Engineering Drawing $1 / \$$ Class: $1^{\text {st }}$ Stage
Time: 2 Hours
Examiner: Mohammed Hussein Alnajim

First Semester Exam 2016-2017

Note: Attempt All Questions.

Q1: Using the geometrical construction to draw the regular pentagon and hexagon inside the circle of radius $R=4 \mathrm{~cm}$.

Q2: Draw the following figure by applying the geometrical construction.

Q3: Draw the three orthographic views using the first angle projection method.

Good Luck

Q1: Answer four only

1. Air is expanded in a piston-cylinder arrangement at a constant pressure of 200 kPa from a volume of $0.1 \mathrm{~m}^{3}$ to a volume of $0.3 \mathrm{~m}^{3}$. Then the temperature is held constant during an expansion of $0.5 \mathrm{~m}^{3}$. Determine the total work done by the air. ?
(A) 98.6 kJ
(B) 88.2 kJ
(C) 70.6 kJ
(D) 64.2 kJ
2. A $200-\mathrm{mm}$-diameter piston is lowered by increasing the pressure from 100 to 800 kPa such that the $P-V$ relationship is $P V^{2}=$ const. If $V 1=0.1 \mathrm{~m}^{3}$, the work done on the system is nearest. ?
(A) -18.3 kJ
(B) -24.2 kJ
(C) -31.6 kJ
(D) -42.9 kJ
3. Air enters a diffuser at 100 kPa and $30^{\circ} \mathrm{C}$, with a velocity of $150 \mathrm{~m} / \mathrm{sec}$. The exit temperature is $40^{\circ} \mathrm{C}$. If a heat loss of $0.4 \mathrm{~kJ} / \mathrm{kg}$ occurred find the exit velocity.? $C_{P}=1.005 \mathrm{KJ} / \mathrm{Kg} \cdot \mathrm{K}$
4. Air is compressed in a cylinder such that the volume changes from 0.2 to $0.02 \mathrm{~m}^{3}$. The initial pressure is 200 kPa . If the pressure is constant, the work is nearest?
(A) -36 kJ
(B) -40 kJ
(C) -46 kJ
(D) -52 kJ
5. Estimate the work necessary to compress the air in a cylinder from a pressure of 100 kPa to that of 2000 kPa . The initial volume is $1000 \mathrm{~cm}^{3}$. An isothermal process is to be assumed.?
(A) 0.5 lkJ
(B) 0.42 kJ
(C) 0.30 kJ
(D) 0.26 kJ
6. The force needed to compress a nonlinear spring is given by $F=10 x^{2} \mathrm{~N}$, where x is the distance the spring is compressed, measured in meters. Calculate the work needed to compress the spring from 0.2 to 0.8 m ?
7. Methane is heated at constant pressure from $0^{\circ} \mathrm{C}$ to $300^{\circ} \mathrm{C}$. How much heat is needed if $\mathbf{P}_{1}=0.2 \mathrm{MPa}$? $\mathbf{C P}=\mathbf{2 . 2 5 4} \mathbf{~ K J} / \mathrm{Kg} \cdot \mathrm{K}$
Q2: A spring loaded piston/cylinder contains 1.5 kg of air at 27 C and 160 kPa . It is now heated to 900 K in a process where the pressure is linear in volume to a final volume of twice the initial volume. Plot the process in a $P-v$ diagram and find the work and heat transfer? $R=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{k}$
(20 Mark)

$$
c_{v}=0.717 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{k}
$$

Q3: 0.5 kg of air it pressure 1.2 bar and volume $0.4 \mathrm{~m}^{3}$ compressed isothermally, then compressed adiabatically to $200^{\circ} \mathrm{C}$. if that work is equal in processes . determine the yolume in each the process ? $R=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K} \quad$ (20 Mark) $K=1.4$

Q3: A spherical balloon is initially filled with air at a specified state. The pressure inside is proportional to the square of the diameter. Heat is transferred to the air until the volume doubles. The work done is to be determined?
(20 Mark)

مـ دـ الهـعد عواد عباس السهلالتي

 س2: إجب

 بـ بـلا

$1 / p$

Ministry of Higher Education and Scientific Research Al-Furat Al-Awsat Technical University

Tech. Eng. College - Najaf/Aeronautical Tech. Eng. Dept. semester examination 2016-2017

First

Q1 Use MATLAB to evaluate:

1. $M=\sqrt[3]{\log \left(\frac{\sin \left(\frac{\pi}{4}\right)}{3+\sec \left(\frac{\pi}{5}\right)}\right)+\cot (\ln \sqrt{\pi})}$
2. $Y=\left[e^{2 t}+t^{3} \csc (6 t)\right] \tan ^{2}(5 t)$

$$
\begin{equation*}
a t t=2 \pi \tag{25}
\end{equation*}
$$

$\mathrm{Q} 2 \backslash \mathrm{R}=\{4,-3,12,1,9\}$ row vector
$C=\{7,22,-1,8,2\}$ column vector

1. Create matrix (A) by appending transpose of row vector $\left(R^{T}\right)$ with column vector (C).
2. Find the dot division of row vector (R) on transpose of column vector $\left(\mathrm{C}^{T}\right)$.
3. Find the magnitude of a row vector $|\mathrm{C}|$.
4. Calculate dot product of the transpose of row vector $\left(\mathrm{R}^{\mathrm{T}}\right)$ and the column vector (C).

$$
\mathrm{Q} 3 \backslash A=\left|\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \tag{25}\\
2 & 7 & 1 & 8 & 9 \\
3 & 4 & 5 & 6 & 2 \\
4 & 9 & 7 & 2 & 1
\end{array}\right|
$$

1. Create sub-matrix (K) by referencing the elements in the $2^{\text {nd }}$ through $4^{\text {th }}$ row and elements in the $2^{\text {nd }}$ through $4^{\text {th }}$ column of matrix (A).
2. Create a row vector (R), from the elements of $3^{\text {rd }}$ row of (A).
3. Create a 4-by-4 matrix (W) from (A) by copy the $1^{\text {st }}$ and $5^{\text {th }}$ columns of (A) twice.
4. Calculate the determinant and inverse of (\mathbf{A}).

$$
\mathrm{Q} 4 \backslash d=\left|\begin{array}{lll}
1 & 2 & 3 \tag{25}\\
2 & 6 & 9
\end{array}\right| \quad W
$$

$$
f=\left|\begin{array}{ll}
1 & 2 \\
2 & 7 \\
3 & 4
\end{array}\right|
$$

1. Create a row vector (V), from the elements of $2^{\text {nd }}$ row of .
2. $C=|V| * V^{T}$.
3. $M=d * f$
4. $Y=|M| * M^{T} * M^{-1}$

Note: Answer all the following questions

Q.1/ The coordinates of the vertices A, B and C of the triangle $A B C$ are $(-3,7),(2,19)$ and $(10,7)$ respectively:

1. Prove that triangle is isosceles.
(12 Marks)
2. Calculate the length of the perpendicular from B to $A C$, and use it to find the area of the triangle.
(8 Marks)
Q. 2 / Find the equations of the lines which pass through the point of the intersection of the lines are $x-3 y=4$ and $3 x+y=2$ respectively, parallel and perpendicular to the line $3 x+4 y=0$.
(20 Marks)
Q.3/ Discuss the continuity of :
$f(x)=\left\{\begin{array}{cc}x+\frac{1}{x} & x<0 \\ -x^{3} & 0 \leq x<1 \\ -1 & 1 \leq x<2 \\ 1 & x=2 \\ 0 & x>2\end{array}\right.$
(20 Marks)
Q.4/ A- Prove the following :
3. $\frac{1+\sin \theta}{1-\sin \theta}=(\sec \theta+\tan \theta)^{2}$
(5 Marks)
4. $\frac{d}{d x} \operatorname{sech}^{-1} u=-\frac{1}{|x| \sqrt{1-u^{2}}} \cdot \frac{d u}{d x}$

B- Solve the following equations for the values of θ from 0 to 360 inclusive:

1) $3 \cos 2 \theta-\sin \theta+2=0$
2) $3 \tan \theta=\tan 2 \theta$
Q.5/ Find $\frac{d y}{d x}$ for the following functions:
3) $y=\sqrt{\tan \sqrt{2 x+7}}$
(6 Marks)
4) $y^{\frac{4}{3}}=\frac{\sqrt{\sin x \cdot \cos x}}{1+2 \cdot \ln x}$
(6 Marks)
5) $\sinh ^{-1}(x y)=\cos ^{-1}(x-y)$

Good Luck
(8 Marks)

Dhurgham AL-Khaffaf
Dr. Assad AL-Sahlani

Al-Furat Al-Awsat Technical University Technical Engineering College Department of Engineering Techniques Aviation
 Subject: Statics

First Semester Exam 2016-2017

Note: Attempt All Questions and All Have Equal Marks.

Q1: Using the principles of equilibrium to verify that the tension in cable $A B$ is $\mathbf{8 5 . 8 \%}$ of the weight of the cylinder of mass m, while the tension in cable $A C$ is $\mathbf{5 5 . 5} \%$ of the suspended weight. Write each tension force acting on point A as a vector if the mass m is 60 kg .

Q2: A force of $200-\mathrm{N}$ is applied to the end of the wrench to tighten a flange bolt which holds the wheel to the axle. Determine the moment M produced by this force about the center O of the wheel for the position of the wrench shown.

Q3:The rigid structural member is subjected to a couple consisting of the two $100-\mathrm{N}$ forces. Replace this couple by an equivalent couple consisting of the two forces \mathbf{P} and $-\mathbf{P}$, each of which has a magnitude of $400-\mathrm{N}$. Determine the proper angle θ.

Q4: Using the resultant to replace the three forces and couple by a force-couple system located at point A.

Head of Department

Q1/ Explain the following terms:

1. Metallic bound.
2. Lattice.
3. APF.
4. unit cell,
5. crystal structure.

22/A/Calculate the radius of Tungsten atom (in nm), APF and coordination number given that W has crystal structure, a density of $22.4 \mathrm{~g} / \mathrm{cm}^{3}$, and an atomic weight of $192.2 \mathrm{~g} / \mathrm{mol}$.
Q2/B/Cite the difference between atomic number and atomic weight with example.

Q3/A/ Briefly cite the main differences between ionic, covalent, and metallic bonding. (14M)
Q3/B/ Sketch the following planes and directions within a cubic unit cell: $(221),(030),(\overline{1} 21)$, [$\overline{1} 21],[12 \overline{2}],[01 \overline{1}]$

Q4/A/ Titanium has unit cell for which the ratio of the lattice parameters is 1.58 . If the radius Tf the Ti atom is 0.1445 nm , determine the unit cell volume, the APF and coordination number.

Q4/B/ What are the main classification of materials with examples?

Q5/A/ Determine the planar density, packing fraction and coordination number for nickel in the (100), (110), and (111) planes. Which, if any, of these planes is closepacked? which has a radius of atom 0.1243 nm .
(15 M)
Q5/B/Explain the deference between the terms materials science and materials engineering.

