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Turbulent Boundary Layers

We have seen that for steady, turbulent, incompressible flow the Reynolds averaged
momentum equations are

∂

∂xj
(UjUi) = −

1

ρ

∂P

∂xi
+

∂

∂xj

„
ν

∂Ui

∂xj
− uiuj

«
(1)

In a turbulent boundary layer the rms turbulent
velocities are typically in the order of 10% or
less of local mean velocities.

This indicates that the Reynolds stresses uiuj

are only a few percent of the mean velocity
squared. The turbulent kinetic energy, defined
as k = (1/2)(u2 + v2 + w2 ), is thus much less
than that of the mean flow.

Despite the above comment, one cannot neglect the turbulence. The appearance of the
Reynolds stresses is the only difference between the equations governing a laminar flow and
those governing the averaged velocities in a turbulent flow.

In order to gain some understanding of the contribution of the Reynolds stresses to the
momentum equations we consider the balance of the various terms in a simple boundary
layer, and the rates of change of stresses across it.
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For this analysis we revert to ordinary Cartesian coordinates because rates of change in a
boundary layer are very different in different directions.

For a 2-D boundary layer with zero pressure gradient, the continuity and streamwise
momentum equations reduce to:

∂U

∂x
+

∂V

∂y
= 0 (2)

∂UU

∂x
+

∂V U

∂y
=

∂

∂x

„
ν

∂U

∂x
− u2

«
+

∂

∂y

„
ν

∂U

∂y
− uv

«
(3)

Over a distance L the boundary layer
grows to a thickness δ, and we assume
that δ ≪ L.

If U is of order U∞, then ∂U/∂x can be
argued to be of order U∞/L.

Hence, in order for the two terms in the
continuity equation to balance, V must be
of order U∞δ/L.
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Using the above estimates, the relative magnitudes of the terms in the U momentum
equation are thus:

∂UU

∂x
+

∂V U

∂y| {z }
=

∂

∂x

„
ν

∂U

∂x

«
−

∂

∂x

“
u2

”
+

∂

∂y

„
ν

∂U

∂y

«
−

∂

∂y
(uv )

U2
∞

L

νU∞

L2

(u′)2

L

νU∞

δ2

(u′)2

δ

where u′ is the typical scale of the turbulent velocity fluctuations.

If we rescale all terms by multiplying each by L/U2
∞

, the relative magnitudes are then

1
ν

U∞L

„
u′

U∞

«2 „
L

δ

«
2 ν

U∞L

„
u′

U∞

«2 L

δ

U∞L/ν is the Reynolds number based on length L and free-stream velocity U∞.

Since boundary layers become turbulent at Reynolds numbers of 106 or greater, the
contribution of the viscous stresses is, on average, very small across the layer.

We have also seen that (u′/U∞)2 is small, with the data shown earlier suggesting it is of
order 10−2.

However, in an equation, the left hand side must balance the right hand side, and thus we
cannot have one term that is significantly greater than all the others.
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We can conclude, therefore, that the most influential term on the right hand side is ∂uv /∂y.

In order for this term to be of the correct magnitude, we also conclude that δ ≈ 10−2L.

Notice that the streamwise gradient ∂u2 /∂x is negligible in such a boundary layer, and it is
only the turbulent shear stress uv which affects the mean velocity profile.

However, the above analysis suggesting that viscous
effects can be neglected cannot be correct across all
of the boundary layer; in particular immediately
adjacent to the wall, since the turbulent velocities must
vanish at a rigid surface.

As will be seen later, uv ∝ y3 at the wall, so that in the
immediate vicinity of the wall momentum must be
diffused by viscosity rather than turbulent mixing.

We thus get the picture of a near-wall
viscosity-affected layer (often referred to as the
viscous sublayer) where both viscous and turbulent
effects may be important, and an outer, “fully turbulent”
region, where direct viscous effects are negligible.
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The y Momentum Equation in a Boundary Layer

The cross-stream momentum equation is

∂UV

∂x
+

∂

∂y
(V V )

| {z }
= −
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«
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„
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«
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The relative magnitudes of the terms are thus
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Since we have already concluded that (u′/U∞)2 ≈ 10−2 and δ/L ≈ 10−2, the term
∂(uv )/∂x is O(1) and the final term in the equation has magnitude 102.

Thus, of all the terms whose relative magnitude is already known, the term ∂v2 /∂y is the
largest one.

In an equation we cannot have one term much greater than all the others. Consequently, this
last term must be balanced by the pressure gradient in the y direction:

1

ρ

∂P

∂y
≈ −

∂v2

∂y
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Integrating this equation across the boundary layer from some point within it to the free
stream (where turbulence is assumed to be negligible), we get:

P − P∞ = −ρv2 or P = P∞ − ρv2 (4)

Thus, in a simple turbulent boundary layer we have P + ρv2 being constant across the
boundary layer.

Note the contrast between this and the corresponding laminar situation where P is constant
across the boundary layer.
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Total Shear Stress Across the Boundary Layer

From the graph showing turbulent and molecular shear stress across the boundary layer one
might guess that, across the near-wall layer, the sum of the two is almost constant.

This result can be shown to follow from making certain assumptions about the boundary
layer.

Since streamwise gradients are small, the U -momentum equation in a zero pressure
gradient boundary layer can be written

∂(UU)

∂x
+

∂(V U)

∂y
=

∂

∂y

„
ν

∂U

∂y
− uv

«
(5)

If convective effects are also assumed to be small, then the above equation reduces to

0 =
∂

∂y

„
ν

∂U

∂y
− uv

«
(6)

Integrating this gives

ν
∂U

∂y
− uv = Constant (7)

However, at the wall uv = 0 and ν∂U/∂y is simply the wall shear stress τw/ρ.
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Hence we get the result that

ν
∂U

∂y
− uv = τw/ρ (8)

Since ν∂U/∂y is the viscous shear stress and −uv the turbulent shear stress, we thus
deduce that the total shear stress is constant across the layer and equal to the wall shear
stress.

As can be seen from the graph, the
assumptions do not hold right across the
boundary layer, but are a reasonable
approximation across the near-wall part of it.
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Mean Kinetic Energy Balance

The mean kinetic energy K is defined as K = 0.5(U2 + V 2 + W 2). In tensor notation this is
usually written as K = 0.5U2

i .

The transport equation for K can be obtained by multiplying the Reynolds equation for Ui by
the velocity Ui (note that this implies summation over the index i):

Ui

»
∂Ui

∂t
+ Uj

∂Ui

∂xj

–
= Ui

"
−

1

ρ

∂P
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j

−
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∂xj

#

The terms on the left hand side give
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∂t
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∂

∂t

`
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´
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∂Ui
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∂
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`
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´
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∂K

∂xj

The viscous terms can be written
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j

=
∂

∂xj

„
Ui ν

∂Ui

∂xj

«
− ν

„
∂Ui

∂xj

«
2

=
∂

∂xj

»
ν

∂
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„
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The terms involving the Reynolds stresses are

−Ui
∂uiuj

∂xj
=

∂

∂xj
(−Ui uiuj) + uiuj

∂Ui

∂xj
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Thus, the K equation can be written as

DK

Dt
= −

1

ρ

∂

∂xj
(PUj) +

∂

∂xj

„
ν

∂K

∂xj
− Ui uiuj

«
+ uiuj

∂Ui

∂xj
− ν

„
∂Ui

∂xj

«
2

(9)

Note that Dφ/Dt is used here, and elsewhere, to denote the total convective derivative:

Dφ

Dt
≡

∂φ

∂t
+ Uj

∂φ

∂xj
≡

∂φ

∂t
+ U

∂φ

∂x
+ V

∂φ

∂y
+ W

∂φ

∂z
(10)

Note also that the convection velocities can be written either inside or outside the
derivatives, since in an incompressible flow

∂Uφ

∂x
+

∂V φ

∂y
+

∂Wφ

∂z
= U

∂φ

∂x
+ V

∂φ

∂y
+ W

∂φ

∂z
+ φ

„
∂U

∂x
+

∂V

∂y
+

∂W

∂z

«
(11)

and the term in brackets is zero from continuity.

The first term on the right hand side of equation (9) is the pressure work.

The second term is diffusive in character, representing mixing due to viscosity and
turbulence.

The final term must be negative, and represents dissipation of mean kinetic energy by
viscous action.

The term involving Reynolds stresses and mean velocity gradients links the mean and
turbulent kinetic energy equations, as will be seen later.
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Mean Kinetic Energy Budget in Plane Channel Flow

Mean kinetic energy Mean kinetic energy budget

——: uv ∂U/∂y; – –: Pressure work;
— —: Diffusion; - - -: Viscous dissipation

(ut is the friction velocity (τw/ρ)1/2, and h the channel half-height)
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Turbulent Kinetic Energy Balance

The turbulent kinetic energy k is defined by k ≡ 0.5u2

i ≡ 0.5(u2 + v2 + w2 ). To derive its
transport equation, we can use

Dk

Dt
=

D

Dt

“
u2

i /2
”

= ui
Dui

Dt
(12)

To proceed further, we need a transport equation for the fluctuating velocity ui. This can be
obtained by subtracting the Reynolds-averaged momentum equation from the Navier Stokes
equation:

Dui

Dt
=

D eUi

Dt
−

DUi

Dt

The derivation is left as an exercise, but the result is:

∂ui

∂t
+ Uj

∂ui

∂xj
= −

1

ρ

∂p

∂xi
− uj

∂Ui

∂xj
+ ν

∂2ui

∂x2

j

−
∂

∂xj
(uiuj − uiuj) (13)

Multiplying this equation by the fluctuating velocity ui (note, again, the implied summation
over the index i), and averaging, we can arrive at:

∂k

∂t
+ Uj

∂k

∂xj
= −uiuj

∂Ui

∂xj
− ν

∂ui

∂xj

∂ui

∂xj
−

∂

∂xi

„
u2

jui/2 + uip/ρ − ν
∂k

∂xi

«
(14)
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The second term on the right hand side of equation (14) represents the dissipation of
turbulent kinetic energy by viscosity at the smallest scales.

The last term represents diffusion, as a result of viscous and turbulent mixing.

The term −uiuj ∂Ui/∂xj must therefore represent the generation of turbulent kinetic energy.
It appears in both kinetic energy equations, and can thus be interpreted as the rate at which
kinetic energy is lost from the mean flow and transferred to the turbulent eddies.

The term −uiuj ∂Ui/∂xj is often denoted by Pk and called the production, or generation,
rate of k.

In most circumstances Pk is positive, representing a transfer of kinetic energy from the mean
flow to the turbulence. However, there are flow conditions under which Pk can be locally
negative in certain regions.
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Turbulent Kinetic Energy Budget in Plane Channel Flow

Turbulent kinetic energy Turbulent kinetic energy budget

——: −uv ∂U/∂y;
– –: Diffusion;
- - -: Dissipation
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Energy Flow Processes Near a Wall

If we make the usual boundary layer or thin shear flow approximation
that U(y) is the only non-zero mean velocity component, then the
mean kinetic energy equation becomes:

DK

Dt
= ν

∂2K

∂y2

| {z }
Term 1

− ν

„
∂U

∂y

«
2

| {z }
Term 2

−
∂

∂x
(PU/ρ)

| {z }
Term 3

+ uv
∂U

∂y| {z }
Term 4

−
∂

∂y
(Uuv )

| {z }
Term 5

(15)

1/2

maxmax

y

U(y)

If we consider a simple turbulent near-wall flow, where the streamwise pressure gradient is
small, the convective rate of change of K is generally found to be much smaller than the
individual source and sink terms on the right.

The K equation is then approximated by

0 = ν
∂2K

∂y2

| {z }
Term 1

− ν

„
∂U

∂y

«
2

| {z }
Term 2

+ uv
∂U

∂y| {z }
Term 4

−
∂

∂y
(Uuv )

| {z }
Term 5

(16)
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As seen earlier, in the near-wall layer of a zero pressure gradient turbulent boundary layer
we get a constant total shear stress:

ν
∂U

∂y
− uv = Const = τw/ρ (17)

This result showed that the sum of the turbulent shear stress (-uv ) and molecular shear
stress (ν∂U/∂y) is constant across the boundary layer (and equal in magnitude to the wall
shear stress).

As seen in the earlier graphs, very close to the wall the turbulent shear stress becomes
small in magnitude and viscous effects must therefore grow. The viscous terms in the K
equation will therefore dominate in this region, and Terms 1 and 2 in equation (16) must
therefore be in balance very close to the wall.

Beyond this viscous sublayer, however, the effects of viscosity on the mean flow are
negligible. There must then be a balance between terms 4 and 5.

In this outer region (the fully-turbulent region), we will see later that the mean velocity U

varies as log(y), so ∂U/∂y ∝ y−1.

When viscous effects are negligible, equation (17) shows that the turbulent shear stress
uv ≈ −τw/ρ. The rate of loss of mean kinetic energy to turbulence (Term 4) is thus
proportional to y−1 in this outer region, so decreases with distance from the wall.
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However, uv ∂U/∂y is zero at the wall (as uv is zero there). Since, as noted above, it
decreases in magnitude across the ‘log-layer’ as y increases, it must reach a maximum in
magnitude at some point between the wall and the log-layer.

Thus the rate of transforming mean kinetic energy into turbulent kinetic energy must be
greatest at some point closer to the wall than the log-layer.

We can examine where exactly in the boundary layer this energy transformation rate is
greatest.

Since the energy transfer rate is given by −uv ∂U/∂y, the maximum transfer rate occurs
where

∂

∂y

„
uv

∂U

∂y

«
= 0 (18)

This equation can be expanded to give

∂uv

∂y

∂U

∂y
+ uv

∂2U

∂y2
= 0 (19)

Eliminating uv from the first term, with the help of equation (17), we obtain

∂U

∂y

∂

∂y

„
ν

∂U

∂y
− τw/ρ

«
+ uv

∂2U

∂y2
= 0
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Since ν and τw/ρ are constants:

ν
∂U

∂y

∂2U

∂y2
= −uv

∂2U

∂y2

Finally, on cancelling ∂2U/∂y2:

ν
∂U

∂y
= −uv

Hence the rate of loss of mean kinetic energy to
turbulence is greatest where the viscous stress
equals the turbulent shear stress.

The generation rate of k thus takes its maximum not
in the ‘fully turbulent’ region, but in the
viscosity-affected region of the boundary layer.

It is also easy to show that at this point the viscous
dissipation of mean kinetic energy equals the loss to
turbulence.

Viscous sublayer

Laminar
sublayer Buffer layer

y

τ  /ρw

y

Viscous
shear stress

Turbulent
shear stress

Loss to turbulence

Viscous dissipation

1.0

0.25

Energy Loss
x ν(τ  /ρ)w

2
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Near-Wall Reynolds Stresses

As seen earlier, there are significant
differences between the levels of the stress
components away from the wall. In a
boundary layer (or shear flow) with mean
velocity U(y), one generally finds
u2 > w2 > v2 .

The question we address here is how do the
stresses behave very close to the wall, as they
approach zero.

To examine the near-wall behaviour of the stresses, we can express the near-wall velocities
as Taylor series expansions in powers of y (the wall-normal distance):

u = a1y + b1y2 + c1y3 + . . .

v = a2y + b2y2 + c2y3 + . . .

w = a3y + b3y2 + c3y3 + . . .

where the a’s, b’s, c’s etc. are functions of x, z and t.

The above expansions do ensure that the velocities vanish at the wall, but they must also
satisfy continuity (∂u/∂x + ∂v/∂y + ∂w/∂z = 0).



- p. 21

Substituting the expansions for the velocities into the continuity equation:

y ∂a1/∂x + y2 ∂b1/∂x + . . .

+ a2 + 2 y b2 + 3 y2 c2 + . . .

+ y ∂a3/∂z + y2 ∂b3/∂z + . . . = 0

Considering the O(1) terms leads to a2 = 0.

Hence close to the wall the velocities behave
as u ∝ y, w ∝ y, but v ∝ y2.

The Reynolds stresses thus behave as
u2 ∝ y2, v2 ∝ y4, w2 ∝ y2 and uv ∝ y3 for
small y.


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

