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Abstract

Several sensing and scientific applications interest the attention of
researchers in the area of microstrip nanoantenna design toward the terahertz
frequency range. The invention of new components in the nanotechnology as
well as optical spectroscopic techniques also leads to the development of the

THz region applications.

In this work, the various geometrical parameters such as the feeding,
dimensions of patch, substrate and ground plane are inserted with different

sizes and shapes in Nanoantennas have been conducted.

In this thesis, design, simulate and analyze a new microstrip
nanoantenna that operates in THz region and covers a lot of optical
communication bands or frequencies range from (100-150) THz. we have
designed and simulated six Microstrip Nanoantenna shapes, where getting a
several frequency bands which operate in THz region. All the dielectric
substrate of the six microstrip Nanoantenna designs are composed the silicon
dielectric material since it contains high dielectric constant £=11.9. The
feeding type that has been used for exciting these types of Nanoantennas were
waveguide feed at 50 Q. All dimensions of the substrate that have been used
in the Microstrip Nanoantenna designs are in the range of (950 x 950) nm?
with a thickness of 50 nm and the dimensions of the ground plane are in the
range of (950 x 950) nm? with a thickness of 20 nm. The patch dimensions
are in the range of (450 x 450) nm? with a thickness of 20 nm. In order to
evaluate the performance of each proposed Nanoantenna, a commercially
available software simulator called CST STUDIO SUITE 2018 has been
utilized to achieve the desired goals. The first and second Microstrip

\%



Nanoantenna designs take the form of Hash and Hash Slot, so it is called
Microstrip Hash Nanoantenna (MHNA) and Microstrip Hash Slot
Nanoantenna (MHSNA). These Nanoantennas works at bandwidth from
(125.3 - 133.3) THz and (126.39 - 132.99) THz respectively. While the third
and fourth Microstrip Nanoantenna designs take the form of Bluetooth and
Bluetooth Slot, so it is called Microstrip Bluetooth Nanoantenna (MBNA) and
Microstrip Bluetooth Slot Nanoantenna (MBSNA). These Nanoantennas
works at bandwidth of (115.54 - 124.47) THz and (128.97 - 135.97) THz
respectively. Finally, the fifth and sixth Microstrip Nanoantenna design takes
the form of Wi-Fi and Wi-Fi Slot, so it is called Microstrip Wi-Fi
Nanoantenna (MWNA) and Microstrip Wi-Fi Slot Nanoantenna (MWSNA),
these Nanoantennas operate in the range of bandwidth of (103.31 - 110.31)
THz and (103.31 - 110.31) THz respectively.

Vi
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CHAPTER ONE
INTRODUCTION

1.1 Background

The antenna is defined by IEEE Standard Definitions of Terms for
Antennas defines the aerial or antenna as “a means for radiating or receiving
radio waves.” In other words, the antenna is the transitional structure
between free-space and a guiding device [1].

The nanoantenna is called the optical antenna. Optical antenna is like
the traditional antenna, so it manages electromagnetic waves with the
exception of that nanoantenna works in the optical frequency segment of the
electromagnetic spectrum. Antenna measurements are comparable to the
working wavelength so as to achieve resonance at optical frequencies.
Antennas must be shrinking to the nanoscale size. Nanoantenna can be
defined as "a nanometer scale metallic structure that is capable of enhancing
the optical radiation interaction with the matter™ [2].

In 1959, Richard Feynman presented an imaginative paper titled
"There’s Plenty of Room at the Bottom". He discussed the problem of
controlling materials on nanoscale measurements. This paper proposed a
scientific idea added to open researcher's eyes on the nanotechnology a little
decades later. He talked about the likelihood of building nanoscale electric
circuits as he asked "is it possible to emit light from nanoantenna array, like
we emit radio waves from antenna array to beam the radio programs to
Europe? Which is similar to beam the light out in a definite direction with
high directivity" [2] [3].
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The progress made by Feynman in nanofabrication techniques and
nanotechnology studies turned Feynman's suggestion into a fact, and many

nanoantennas for several applications have been fabricated [4] [5] [6] [7].

The general features of radiofrequency and microwave counterparts
are compatible with the optical antenna. On the other word, the conventional
antennas and nanoantennas are limited in light that the physical properties
that materials have and materials reaction to the optical frequencies are
various from that at RF/microwave frequencies. So, the design and the direct
scaled-down interpretation of conventional antenna theory is impossible.
Thus the new Nano scaled-down antenna theory should take into

consideration the various phenomena at the optical frequencies [8].

The first concept of Nano optical is introduced by K.B.Crozier group
in Stanford University to the Nano photonic device which connects optical-
frequency electromagnetic waves to sub-wavelength scale effectively by
using surface Plasmon effects [9]. So, Nanoantennas are designed to
discover the light in the visible part, infrared part and farther, perhaps
applied in Polari-metric imaging systems, optical sensors, and for other

applications [10].

Newly Nanoantennas have received growing attention in
nanotechnology research. They can be used in many applications like
microscopy, data-communication, spectroscopy, and even solar energy

harvesting [11].
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1.1 Microstrip Antenna

The idea of Microstrip antenna starts in 1950 and it was presented
by Deschamps, and for several years later Microstrip based antenna was
presented by Gutton and Baissino, Despite the spread of the Microstrip
concept, where there was little activity to develop in 15 years [12] [13].
So, the early of 1970, the development of Microstrip antenna began to
increase with the need for thin antennas for spacecraft, conformal, and

missiles [14].

1.2 Applications of the Nanoantenna

In this part, Microstrip antennas have been attracted much
consideration from engineers, researchers and designers. Indeed, they
have been utilized widely in RF and microwave systems, for example,
biomedical systems, radar, communications, navigation, and remote
sensing. Also, they can take several shapes, for example, dipole,
patch, traveling-wave structure, or a slot, intended for specific

applications [15].

A. Microscopy: Nanoantenna empowers scientists to create what is
called near field optical microscopy. This optical imaging strategy can
be utilized to break, as far as possible, around A/2. In near field optical
microscopy mapping of the near field distribution of nanoscale
antenna or nanostructure can be acquired by identifying the scattering

response from a sharp probing tip (for this reason, bowtie
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Nanoantenna is usually utilized) oscillating over the surface of a

sample [4].

B. Sensing: Nanostructures are considered smooth to the environment;
subsequently any change in refractive index of the surrounding
medium leads to red or then again blue move in the situation of the far

field resonance peak [16].

C. Energy harvesting applications: notwithstanding the known
potential utilizations of Nanoantenna array in sun oriented panels,
Nanoantenna array has potential applications in the Cooling
frameworks by changing over infrared warmth radiation "IR" into
another type of radiation, Exploiting our bodies' radiation for power
creation, Cooling or heating inside dress and cooling devices and
energy collectors that draw squander warm from car engines, The
middle of the range, electronic devices that can be utilized in cooling

PCs/workstations as an option in contrast to the regular fans [2].

D. Spectrograph: It has been discovered that the Raman signal can be
improved by a factor of larger than 10*® when particles are absorbed
on plasmonic Nanostructure which is named as Surface Enhanced
Raman Scattering (SERS). Therefore Nanoantennas can be utilized to

improve the location limit to a single molecule [2].
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1.3

1.4

Motivation

The researchers and scientists are very important in the THz
visible regions, the familiar studies offer frequency bands in the field
of GHz. So decided to introduce a set design of Microstrip
Nanoantenna to operate in the THz region to cover the visible region
and infrared (IR) [17].

Chart of the Electromagnetic Spectrum
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Figure 1.1: The electromagnetic spectrum [18]

Problem Statement

Size and power are two of the main design choices for any
antenna system. Often there is tradeoff between these two as smaller
antennas lead to a decrease antenna gain and therefore less power. So,
by minimizing the antenna size, the antenna gain can be enhanced

without changing the structure of the antenna.
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1.5 Aims of the work

1.6

1.7

The aim of this thesis to design and simulate a Microstrip
Nanoantenna to cover a lot of optical communication bands starting
from O-band (1260-1360) nm, E-band (1360-1460) nm, S-band
(1460-1530) nm, C-band (1530-1565) nm, L-band (1565-1625) nm
and lastly U-band (1625-1675) nm, or frequencies range from (80-
300) THz. These values can be specified with the design of Microstrip
Nanoantenna, and by applying the CST Microwave Studio 2018
simulator will get a band of frequency range of (106-133) THz.

Objective

The objective of this thesis is to design, simulate and analyze a
new Microstrip Nanoantenna that operates in THz region and covers a
lot of optical communication bands or frequencies range from (100-
150) THz.

Thesis Contribution

A novel six nanoantennas designs has been done based on the
CST Microwave Studio 2018 simulator to obtain the suitable values
for the parameters of the antenna to extract the best one for overall

designs.
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1.8 Thesis layout

Chapter One: It is an introduction to the Nanoantenna, applications

of the Nanoantenna, motivation, aim of this thesis and thesis layout.

Chapter Two: It includes a literature review of several types of

Microstrip Nanoantennas.

Chapter Three: It includes the theory and design configuration of the

proposed Microstrip Nanoantennas.

Chapter Four: It in this chapter, discussing the simulation and the

results obtained from the proposed Microstrip Nanoantennas.

Chapter Five: It presents the conclusions of the proposed Microstrip

Nanoantennas and recommendations for future work.



2.1

2.2

CHAPTER TWO
LITERATURE REVIEW

Introduction

In this chapter, the literature review about the previous works
and related works in Nanoantenna will be presented, in particular the
Microstrip Nanoantenna will be studied and analyzed in this thesis.
Therefore, the substrate and the frequency bands of the Nanoantennas

will be discussed in the layout review.

Literature Review

In 2011, A. Kawakami et.al [19] proposed a way to enhance the
reaction execution of infrared detectors by building up a fabrication
process for Nanoantennas and measuring the progress temperature to
the superconducting strips. A Nanoantenna comprises of a dipole
antenna built with aluminum strips, and an NbN thin film strip is put
in the antenna’s center. The operation frequency is required to be at
around 40 THz. The assessed antennas dimension was separately set
at (L=2400 nm and W=400 nm); the antennas were put at the area of 1

mm?. The dielectric material of the substrate is MgO.
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In 2011, Kumud R. and G. Singh [20] investigated a Microstrip
Nanoantenna at THz frequency. The designed Nanoantenna is
proposed to radiate at the frequency range of 0.5-0.7 THz with high
radiation efficiency and gain. The effect of different substrate
parameters of the proposed Nanoantenna has been simulated and
analyzed. The CST Microwave Studio simulator has been used to
perform the simulation process, a commercial simulator based on
limited options. The radiation efficiency of the proposed Nanoantenna
1S 94.50% at 0.6 THz.

In 2011, Mario Bareib et.al [21] proposed a “Nano Antenna Array
for Terahertz Detection” an infrared (IR). ldentifiers have been
manufactured comprising of Antenna-Coupled Metal Oxide Metal
Diodes (ACMOMDs). These identifiers were characterized by
utilizing electron beam lithography. They are intended to be touchy to
the IR range and work at room temperature without cooling. The
printed antenna structures comprise of gold and aluminum. The

Nanoantenna design has used silicon as a dielectric material substrate.

In 2013, Lechen Yang et.al [22] discussed two-dimensional photonic
precious stones working at THz frequency. A multi-frequency THz
Microstrip patch Nanoantenna on crystal substrate is exhibited and its
electromagnetic wave engendering wonder is researched. The
proposed design can operate at five frequency scope at the THz
region, and the radiation efficiency is up to 96%. The photonic crystal
structure of the substrate is utilized to improve the directivity,
radiation efficiency and the gain of the Nanoantenna.
9
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In 2013, Junsei Horikawa et.al [23] proposed in “Study of Mid-
Infrared Superconducting Detector with Phased Array Nano-Slot
Antenna” a Nano-slot antenna with a micro-detector. Depending on
the properties of antenna and Microstrip for the design of a mid-
infrared detector with antenna. The Microstrip line and antenna were
designed for operating at a wave center near 5 um. In the substrate,
using the MgO dielectric material. The resonant frequency of the

proposed antenna is 54 THz.

In 2013, Evgeny G. Mironov [24] presented a High-Power Pulsed
Operation using titanium Nanoantenna. Nanoantenna is composed of
the gold metal (or titanium). Devices are made by utilizing gold or
titanium. So, gold is a common choice that is used in plasmonic
because of its relatively low losses. The dielectric substrate made
from Quartz. The wavelength for this work is 1053 nm correspond to
the resonant frequency 284 THz. The Nanoantenna application is used

in nonlinear optics, photovoltaics, sensing and imaging.

In 2014, Ameneh Nejati et.al [25] studied the “Effect of photonic
crystal and frequency selective surface implementation on gain
enhancement in the Microstrip patch antenna at terahertz frequency”
on the Microstrip patch antenna, in the range of frequencies (0.5-0.7)
THz. The arrangement of holes on an antenna and the effects of
substrate thickness in both Photonic Band Gap (PBG) forms are
studied. The tools that are used for simulations and designs are CST
Microwave Studio and Ansoft HFSS.

10
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In 2014, B. Mehta and Zaghloul [26] discussed the tuning of optical
Nanoantennas in visible range utilizing graphene. Setting monolayer
and bilayers of graphene sheets over the optical Nanoantennas will
result in an adjustment in resonating wavelength. The FDTD (Finite
Difference Time Domain) simulation is used to check the experiment
results. Gold was utilized for the creation of the dipole Nanoantennas.
Fused silica is utilized as the substrate and titanium is utilized as layer
between fused silica substrate and gold. So, used a gap to isolate to
the two sequential dipole nanoantennas. A result is a large number of
dipole Nanoantennas in array. The manufacture was done in 1 x 1 mm
zone to disentangle the optical estimation setup expected to test the

device.

In 2015, Amandeep S. and Surinder S. [27] proposed a
“Trapezoidal microstrip patch antenna on photonic crystal substrate
for high speed THz applications” Microstrip line is utilized to provide
the coupling among source and Nanoantennas. The proposed design is
created to be used in wider bandwidth of 0.88-1.62 THz. It is
observed that the VSWR (Voltage Standing Wave Ratio), gain and

return loss achieved show large improvement.

In 2015, Behzad Ashrafi et.al [28] proposed a “Nanoantenna System
Utilized a Plasmonic Rotman Lens with Five Switchable Beams”
operating at the standard telecommunication wavelength of 1.55 pm.
The array consists of six plasmonic nanoantennas fed by plasmonic

waveguides. The substrate layer material is SiO,. The resonant
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frequency is 193.5 THz. high gain and suitable bandwidth achieve
from this work. The designed Nanoantenna is used for optical wireless

communication and low-cost integrated systems applications.

e In 2015, Fatemeh Taghian et.al [29] proposed “Enhanced Thin Solar
Cells Using Optical Nanoantenna Induced Hybrid Plasmonic
Travelling-Wave” to trap the light inside solar cells. In this technique,
a Nanoantenna structure is presented and executed in the silicon based
solar cells, to redirect the light. The structure of proposed antenna is
numerically explain utilizing limited FDFD (Finite Deference
Frequency Domain) method. Simulation results demonstrate that by
utilizing the proposed Nanoantenna as the back contact of the solar
cells. So, the resonant frequency is 333 THz. The antenna has been

used silicon in the dielectric substrate material.

e In 2015, Luke Zakrajsek et.al [30] discussed the Graphene-based
plasmonic antenna could empower ultra-broadband correspondence
among Nano-device in the Terahertz band (0.1- 10 THz). The
manufacture, control, and situation of exactly shaped graphene-based
Nano-structures still stance numerous commonsense difficulties. So,
demonstrating that lithographically characterize graphene antennas.

The material of substrate is SiO,.

e In 2017, Mai etal [31] proposed a new circularly polarized
Nanoantennas intended for optical media transmission applications.
In this paper “Novel Wire-Grid Nano-Antenna Array with Circularly

Polarized Radiation for Wireless Optical Communication Systems”.
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The array comprises two groups of radiators which are symmetrical to
each other. The antenna produce a high directivity 10.8 dBi and a
wide bandwidth transfer speed that covers the range from 188.2 THz
to 197.8 THz. The efficiency of the antennas is 82.75% at the resonant
frequency of 193.55 THz.

e In 2017, Divesh M. & Ekambir S. [32] proposed a “THz
Rectangular Microstrip Patch  Antenna Employing Polyimide
Substrate for Video Rate Imaging and Homeland Defense
Applications”. So, for Microstrip copper (Cu) is used in the patch and
ground, substrate uses the dielectric polyimide. The proposed
Microstrip has been fed by feedline having impedance of 49.78 Q.
The antenna gain is 5.22 dB and directivity is 5.08 dBi at resonant
frequency of 0.67 THz. CST Microwave Studio 2014 has been used to
simulate results. The range of frequencies are (0.6-0.8 THz) for
homeland defense applications and (0.6 THz) for a vide-rate imaging

system.

e In 2018, Ritesh Kumar et.al [33] studied a novel Microstrip patch
antenna configuration, utilizing the photonic crystal for THz spectral
band applications. The material of the substrate is polyimide that
utilizes Photonic Band Gap (PBG) and the Gain and Directivity shows
good results at frequency 0.6308 THz. Additionally, the working
frequency is different from 0.6152 THz to 0.6514 THz. So, it is used

for detection of explosive and material characterization applications.
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In 2018, Qudsia Rubani et.al [34] a Microstrip patch antenna at THz
region had been structured and investigated. The material used in the
substrate is RT/Duriod6010 (&=10.2). So, the resonant frequency of
this design is 0.852 THz which should be executed in Wireless Body
Area Networks for the transmission. Furthermore, the measure of
power transmission at different distance among transmitter and

receiver has been analyzed at various modulation cases.

In 2018, Abdel-Karim et.al [35] a novel Nanoantenna with two
radiation modes is presented. The structure of this Nanoantenna
comprises of a ring coupler and two patch antennas put on a SiO,
substrate. The proposed Nanoantennas is advanced to limit the losses
in radiation efficiency. There are two optimization techniques, in
particular multi-objective particle swarm method and configuration

focusing method. The resonant frequency of this design is 193 THz.

In 2018, Yuyao Chen et.al [36] proposed a plasmonic Nanoantenna
absorber together with a metal-insulator-metal (MIM) tri-layer
structure, the best layer of metallic Nanoantennas, a center layer of
dielectric spacer and a metallic base layer with thickness considerably
bigger than the depth skin of incident electromagnetic waves. The
substrate is composed of Silicon. Finally, in this work the resonant
frequency is 2 THz. The shape design of the antenna is similar to the

new Q-code.
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In 2019, Seyed Arash and Gholamreza Moradi [37] proposed a
novel design using graphene with patch operating at THz band.
Graphene helps Surface Plasmon Polaritons (SPP) and gives good
conductors. Computer Simulation Technology (CST) simulator
program is applied to the proposed antenna. Microstrip line feeding is
utilized to exciting antenna. A null fill improvement method of (H-

plane) radiation pattern has been analyzed and studied.

In 2019, Go'ktug Isklar et.al [38] proposed the “Design and
Analysis of Nanoantenna Arrays for Imaging and Sensing
Applications at Optical Frequencies” a Nanoantenna operate in THz
region using dielectric particles in the dialectical substrate. The shape
that has been designed is called the bowtie. They notice the range of
frequency band will start from 400 THz and end approximately at 500
THz.

All previous studies referenced in the literature study (are
concluded in Table 2.1) are expected to design an antenna with a
smaller size, good gain, suitable bandwidth and good directivity. So,
in order to plan an appropriate Microstrip Nanoantenna with an ideal
detail and best outcomes like reduced reflection coefficient S;; smaller
than usual, wide bandwidth, high gain and high directivity. So, many
of the proposed models in Nanoantennas are designed to operating in

the field of terahertz region.
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3.1

CHAPTER THREE
THEORY AND DESIGN CONFIGURATION

Introduction

This chapter, an introduction to the Microstrip antenna and how
to divide its layers will be given. Then discuss the design of several
shapes of Microstrip Nanoantennas. The exciting ports of all proposed
Nanoantennas are named waveguide port because they are considered
easy to design and the simplest kind of feeding techniques. The effect
of changing various shapes of the Nanoantenna are discussed and
analyzed to choose the best one. The performance of the proposed
Nanoantennas is evaluated all of the presented Nanoantennas by CST
STUDIO SUITE software version 2018.

In this thesis, six designs of Nanoantennas are proposed. The
first and second designs have a Hash-shape patch and a Hash-shape
Slot patch in which square substrate is used. The third and fourth
designs have a Bluetooth-shape patch and a Bluetooth-shape Slot
patch; they are etched using suitable substrate dimensions. The fifth
and sixth designs have a Wi-Fi-shape patch and a Wi-Fi-shape Slot
patch with the same types of substrate. Therefore, the substrate layer
(middle layer) that utilized is made of silicon with a relative dielectric

constant of er=11.9 with thickness h = 50 nm.
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3.2

3.2.1

3.2.2

Microstrip Antenna layers
The Microstrip Antenna consists of three layers:
Patch Antenna (first layer)

The first layer is called the patch. Microstrip patch antennas are
considered one of the most fundamental and essential kinds of planar
Antenna. Huge numbers of the ideas and methods utilized with
Microstrip Patch Antennas can be connected straightforward to other
planar antennas [15]. Microstrip patch antenna is considered the
simplest type of Microstrip Antenna which is essentially composed of
three layers as shown in Figure 3.1. This layer is responsible for
radiation. It is manufactured from a thin conducting material, for
example gold (Au) or copper (Cu) and is printed or etched on the

second layer (medium) that is called the dielectric substrate.

The form of patch, as shown in Figure 3.2, may take numerous
geometrical shapes: square, rectangular, triangular, elliptical and

circular or other various shapes [39].

Substrate (second layer)

The dielectric substrate is considered a medium layer that lies
between the patch and the ground. So, to plan a minimized size of
Microstrip, the dielectric substrate must be utilized with a high
dielectric constant value. Hence, a tradeoff must be made between the

size of the antennas and its performance. One of the considerations
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3.2.3

that has an effect on the substrate material is the dielectric constant on
the radiation characteristics. A high dielectric constant results in low

radiation from a Microstrip patch antenna [12] [39] [40].

Ground (third layer)

This layer is classified as the last layer (third) of Microstrip
antenna. So, it is regarded as the corresponding side of the substrate
with a conducting material that is called ground plane that represents
the third layer [39].

Patch ——»

Dielectric constant

Ground plane

Figure 3.1: Basic structure of Microstrip [12].
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(a) Square (b)Rectangular  (c) Dipole  (d)Circular () Elliptical

Ao Qv

(f)Triangular (o) piscsector  (h)Circularring (i) Ring sector

Figure 3.2: Common shapes of patch [12].

3.3 Feeding Technique

There are many techniques are used in feeding Microstrip patch
antenna. These techniques can be characterized into two classes
contacting and non-contacting. In the contacting technique, the RF
power is directly fed to the radiating patch utilizing a connecting
component, for example, a Microstrip line. In the non-contacting
technique, electromagnetic field coupling is done to exchange power
between the radiating patch and the Microstrip line. Here explaining the
most popular feed techniques have been utilized: the Microstrip line,
coaxial probe, aperture coupling, proximity coupling and waveguide
reflector [41].

26



Chapter Three Theory and Design Configuration

3.3.1 Microstrip line feed

In this type of feeding, the link of the strip is used directly
with the edge of the Microstrip patch as shown in Figure 3.3. The
conducting strip is smaller in length and width compared with the
patch. This type of feeding arrangement has the advantage that the
feed can be etched on the same substrate to provide a suitable

power [41].

Microstrip Feed

Patch

Substrate

Ground Plane /

Figure 3.3: Microstrip Line Feed [41].
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3.3.2 Coaxial feed

The Coaxial probe or feed is considered one of the most
normal techniques utilized for feeding Microstrip patch antennas.
As shown in Figure 3.4, the outer conductor is associated with the
ground plane, while the inner conductor of the coaxial connector
expands through the dielectric and is soldered to the radiating
patch. The main feature of this sort of feeding is that the feed can
be put at any ideal position inside the patch so as to acquire
impedance matching. This feed technique is easy to manufacture

and has low false radiation effects [41].

Substrate

Coaxial
Connector

Ground Plane

Figure 3.4: Coaxial feed [41].
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3.3.3  Aperture coupled feed

In this type of feeding, as shown in Figure 3.5, the radiating
Microstrip patch is etched on the highest point of substrate of the
antenna, and the Microstrip feed line is etched on the base of the
feed substrate so as to get aperture coupling. The dielectric
constants and thickness of these two substrates may be chosen to

optimize the distinct electrical functions of radiation [41].

Antenna Substrate

Patch

Coupling aperture

Ground plane

Feed Substrate

Microstrip line

Figure 3.5: Aperture coupled feed [12].
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Proximity coupled feed

This technique is also called the electromagnetic coupling
scheme. As shown in Figure 3.6, two dielectric substrates are
utilized. Thus the feed line is behind the two substrates and the
radiating patch is on top of the highest substrate. The main features
of this feeding technique are that it eliminates false feed radiation
and provides a high bandwidth, due to the increase in the electrical

thickness that is utilized in the Microstrip patch antenna [41].

Feedline

<«—— Ground plane

Figure 3.6: Proximity coupled feed [12].
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3.35 Co-Planer Waveguide (CPW) feed

This technique is very important for the Microstrip antenna
and it is widely utilized. The Co-Planer Waveguide consists of a
center feed stripline limited by duplicate ground plane with a small
gap separating between them. The main structure is etched on one

side of dielectric substrate only as shown in Figure 3.7 [12].

CPW feed

Substrate

Ground plane

[/

Figure 3.7: CPW feed [12].
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3.3.6  Waveguide feed

This port is considered one of the most famous types and
Is used for feeding. The characteristic impedance of the
waveguide feeding is selected as 50Q for the purpose of

matching, as shown in Figure 3.8 [42].

Ground
plane

Substrate

Patch

Figure 3.8: Waveguide feed [43].

3.4 Antenna parameter

3.4.1 Reflection Coefficient

The reflection coefficient (S;1) is defined as “a parameter
which quantizes how much of electromagnetic wave or power is

reflected from an interface between two different mediums with
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different impedances.” It is calculated from the ratio of reflected

wave to incident wave [44]. Sy1 is given as:

Where:
E~: Amplitude of reflected wave. E*: Amplitude of incident wave.

There is also an important relationship to calculate the Reflection
coefficient [13] :

Reflection coefficient = %o . (3.2)
Zp+Zo

Where:- Zr load impedance, Zo characteristics impedance

The range of good design (-10 dB to -50 dB).

3.4.2 Gain

The gain (G) for any antenna is defined as “the ratio of the
intensity, in a given direction, to the radiation intensity that
would be obtained if the power accepted by the antenna were
radiated isotopically. The radiation intensity corresponding to the
isotopically radiated power is equal to the power accepted (input)
by the antenna divided by 4m.” [1].

The gain can be calculated from equation (3.3)

Where: Pj,: total input power & U: radiation intensity

The range of good design (2 dB to 7 dB).
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3.4.3

3.4.4

Directivity

The directivity (D) of an antenna is defined as “the ratio of
the radiation intensity in a given direction from the antenna to the
radiation intensity averaged over all directions. The average
radiation intensity is equal to the total power radiated by the
antenna divided by 4m. If the direction is not specified, the
direction of maximum radiation intensity is implied.” [1] [45].
The directivity can be calculated from equation (3.4). The range
of good design (2.5 dB to 7.5 dB).

_4anU

p=2Y% .. (3.4)

Where: Pyaq: total power radiation, U: radiation intensity

Current distribution

When the source of microwave is connected with
Microstrip antenna, the charge will establish distribution in the
lower and the upper planes of the antenna.

There are two mechanisms that are used to control the
charge distribution: attractive and repulsive. The attractive force
is between the opposite charges on the ground plane and patch; it
creates a current density at the bottom of the patch inside the
dielectric. The repulsive force is between the same charges; it
pushes the charges from the bottom of patch around the edge of
the patch to the top of the patch. So as to that is create another

current density [13].
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3.4.5

3.4.6

3.4.7

Radiation pattern

The radiation pattern is a variation in the power radiated
from the Nanoantenna as a function of the direction away from
the Nanoantenna. So, the fields radiated by any antennas with
limited dimensions are spherical waves. So, we represent the
far-field region with respect to theta and phi (elevation and
azimuth angles) [12] [46].

Efficiency

We can calculate the radiation efficiency of the proposed
Nanoantenna depending on the values of the gain and

directivity which can be calculated by equation (3.5) [47]:

Efficiency = 2% 100% ......... (3.5)

Bandwidth

The bandwidth for any antenna is defined as “the range of
frequencies within which the performance of the antenna, with
respect to some characteristic, conforms to a specified
standard.” [1]. Bandwidth of antenna is calculated from the
curve of reflection coefficient depending on the -10 dB. It
represents a distance from the lower frequency and the higher

frequency [48].
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3.5 The proposed model 1. Microstrip Hash-shape
Nanoantenna (MHNA)

The first model designed is a Microstrip Hash-shape
Nanoantenna which uses a square geometry shape. Thus the substrate
and the ground plane takes the square shape with suitable dimensions
to achieve good result. This Nanoantenna is designed by using a
silicon substrate (middle layer) with dimension of (950 x 950) nm? W,
L respectively with thickness (h) (50) nm to give the desired results.
We have used silicon because it has high dielectric constant €=11.9.

The overall view of MHNA is shown in Figure 3.9.

Substrate > 300.00 nm L]
Ground
/ plane
=1 [
£ £ _
= & Y M
g | S
) | =
o] | I I
Patch | —* | & S
=
2 |
(a) (b)
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()

Figure 3.9: a: MHNA front view; b: MHNA side view; c: MHNA

perspective view,

The patch layer (upper layer) material is composed of gold
metal. The dimension of Hash-shape patch Nanoantenna is (500) nm
for width (Wp) and (500) nm for length (Lp) with thickness (t) (20)
nm. The cutoff region in the four corner of patch MHNA is (100 x
100) nm?2. The purpose of these cutoff corners of new design MHNA
Is to change the current distribution on the patch that leads to enhance
the radiation pattern of MHNA. Moreover, in order to get the best
solving for both far-field and reflection coefficient Si; we utilized
waveguide excitation port. The ground layer (lower layer) consists of
gold with dimension (950 x 950) nm?, meanwhile the thickness is (20)

nm.
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The method of designing the above Nanoantenna in the CST
simulator program is done by drawing a square. Then we make four
pieces in the corners of the square that is drawn with regard to the
mentioned dimensions and thickness. The overall dimensions of
MHNA are shown in Table 3.1.

Table 3.1. MHNA dimensions.

NO. dimensions Values (nm)
1 Substrate width, W 950
2 Substrate length, L 950
B Thickness of Substrate, h 50
4 Ground width, Wg 950
5 Ground length, Lg 950
6 Thickness of Ground, t 20
7 Patch width, Wp 500
8 Patch length, Lp 500
9 Thickness of patch, t 20

3.6 The proposed model II: Microstrip Hash-shape Slot
Nanoantenna (MHSNA).

The method of designing the second model Microstrip Hash-
shape Slot Nanoantenna similar to the method of drawing the first
design with a simple change. Here, we draw a large square with the
same dimensions of the substrate and then we draw a small square and
choose other material than gold (to cut only) and cut the part that is
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chosen. In addition, we draw eight squares and cut them. The final
drawing is the shape hash slot. The MHSNA overall view is shown in

Figure 3.10. It is considered the inverse of the first design in the case

of patch. So, we use silicon in the substrate with dimension of (900 x
900) nm? W, L respectively with thickness (h) (50) nm with suitable

dimensions to achieve the desired result.

Substrate ///‘ﬂm; Ground
‘ / plane
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Patch = = > =
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_ @ @
(d)
Figure 3.10: a: MHSNA front view; b: MHSNA side view; c:
MHSNA perspective view; d: MHSNA bottom view.

The ground plane layer is composed of gold with dimension
(900 x 900) nm? and the thickness is (20) nm. While the upper layer
that is called patch layer material is composed of gold metal. The
dimension of Hash-shape patch Nanoantenna is (500 x 500) nm? for
width (Wp) and length (Lp) with thickness (t) (20) nm. These
dimensions represent the slotted patch. The cutoff region in the four
corners of patch MHSNA is (100 x 100) nm2. Moreover, we utilize
waveguide excitation port. The overall dimensions of MHSNA are

shown in Table 3.2.
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Table 3.2. MHSNA dimensions.

NO. dimensions Values (nm)
1 Patch slot width, Wp 500
2 Patch slot length, Lp 500
3 Thickness of patch, t 20
4 Substrate width, W 900
5 Substrate length, L 900
6 Thickness of Substrate, h 50
7 Ground width, Wg 900
8 Ground length, Lg 900
9 Thickness of Ground, t 20

3.7 The proposed model Ill: Microstrip Bluetooth-shape
Nanoantenna (MBNA).

The third model Microstrip Bluetooth-shape Nanoantenna is
designed by using a patch Nanoantenna takes the Bluetooth-shape.
The substrate layer of this Nanoantenna is designed by utilizing a
silicon layer having width (W) 900 nm and length (L) 900 nm with
thickness (h) (50) nm to give the optimal results. The dimension of the
ground plane is the same dimension of the substrate layer as

mentioned above, but the thickness is (20) nm.
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Figure 3.11: a: MBNA front view; b: MBNA side view; c: MBNA

bottom view; d: MBNA perspective view.
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The design method for this Nanoantenna is made by using
polygon. Which is found in the modeling shapes section in 2D curve,
designing the form of Bluetooth as shown in Figure 3.11. The patch
layer is composed of gold metal. The patch dimensions of MBNA is
(500 x 600) nm? for width (Wp) and length (Lp) respectively. While
the thickness (t) is (20) nm. These patches take the shape like the three
triangular. The cutting regions that are found in the three triangular
are very compatible with the size of patch Nanoantenna. Utilizing
waveguide excitation port for the above design. The overall

dimensions of MBNA are shown in Table 3.3.

Table 3.3. MBNA dimensions.

NO. dimensions Values (nm)
1 Ground width, Wg 900
2 Ground length, Lg 900
g Thickness of Ground, t 20
4 Substrate width, W 900
5 Substrate length, L 900
6 Thickness of Substrate, h 50
7 Width of patch, Wp 500
8 Length of patch, Lp 600
9 Thickness of patch, t 20
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3.8 The proposed model V: Microstrip Bluetooth-shape Slot
Nanoantenna (MBSNA).

The fourth design of the Nanoantennas is considered the
opposite of the previous design. In other words, the Bluetooth shape

used in the patch uses itself but is slot that as shown in Figure 3.12.

Designing the patch with the same dimensions as the substrate
and then engrave the Bluetooth shape on it that discussed earlier. The
dimensions of Nanoantenna patch are (500) nm for width (Wp), (600)
nm for length (Lp) and thickness (t) (20) nm.

The substrate and the ground plane takes the square shape with
dimensions (950 x 950) nm? W, L respectively and thickness (h) (50)
nm. This Nanoantenna is designed using silicon as a substrate and use

gold in both patch and ground plane.

Also, utilizing a waveguide excitation port for the above design.

The overall dimensions of MBSNA are shown in Table 3.4.
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Figure 3.12: a: MBSNA front view; b: MBSNA side view; c:

MBSNA perspective view; d: MBSNA bottom view.
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Table 3.4. MBSNA dimensions.

NO. dimensions Values (nm)
1 Ground width, Wg 950
2 Ground length, Lg 950
3 Thickness of Ground, t 20
4 Substrate width, W 950
5 Substrate length, L 950
6 Thickness of Substrate, h 50
7 Width of slot patch, Wp 500
8 Length of slot patch, Lp 600
9 Thickness of patch, t 20

3.9 The proposed model VI; Microstrip Wi-Fi-shape
Nanoantenna (MWNA).

The fifth proposed design of Microstrip Wi-Fi-shape
Nanoantenna is based on forth circles in terms of design as shown in
Figure 3.13. The above MWNA is composed of three layers: Patch,
Substrate and Ground. The gold metal is used in both patches
Nanoantenna and ground plane. The substrate layer dimensions are
900, 900 nm W, L respectively. The dielectric material used in the
substrate is Silicon with thickness (h) 50 nm. The dielectric constant
for silicon &=11.9. Whereas the ground layer dimensions are 1100 x
1100 nm?, the thickness (t) is 20 nm.
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Figure 3.13: a: MWNA front view; b: MWNA side view; c:
MWNA perspective view; d: MWNA bottom view.
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The design method that used in this Nanoantenna is based on
four circles: First Patch circle R1=125 nm. Second Patch circle
R2=275 nm. Third Patch circle R3=425 nm and Fourth Patch circle
R4=525 nm. The distance between the circles is 150 nm with
thickness (t) 20 nm. These patches take the shape of Wi-Fi-shape. It
can be designed depending on the circles. The ground plane consists
of gold with dimension (1100 x 1100) nm? and the thickness was (20)
nm. The port that was used is waveguide excitation. All dimensions of
MWNA are shown in Table 3.5.

Table 3.5. MWNA dimensions.

NO. dimensions Values (nm)
1 Thickness of patch, t 20
2 First Patch circle R1 125
3 Second Patch circle R2 275
4 Third Patch circle R3 425
5 Fourth Patch circle R4 525
6 Distance between circles 150
7 Substrate width, W 1100
8 Substrate length, L 1100
g Thickness of Substrate, h 50
10 Thickness of Ground, t 20
11 Ground width, Wg 1100
12 Ground length, Lg 1100
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3.10 The proposed model VII; Microstrip Wi-Fi-shape Slot
Nanoantenna (MWSNA).

The sixth proposed design of Nanoantenna, which is called
MWSNA, is shown in Figure 3.14. It is designed using silicon
substrate with dimension (1000 x 1000) nm?, thickness (h) 50 nm and

the dielectric constant is ¢=11.9.

The ground layer dimensions are 1000 x 1000 nm?, while the
thickness (t) is 20 nm. Gold metal is used in the designs of ground

layer and patch layer.

In the design process of patch Nanoantenna, taking the inverse
of the previous design (MWNA). Thus the Wi-Fi-shape slot patch
Nanoantenna consists of four circles: first Patch circle R1=125 n;
second Patch circle R2=275 n; third Patch circle R3=425 nm and
fourth Patch circle R4=525 nm. The distance between the circles is
150 nm with thickness (t) 20 nm. So we design the patch Nanoantenna
with the same size as the substrate and the ground plane. Then another
material is used for cutting purpose. Finally, we cut from the drawing
the shape of Wi-Fi to maintain engraved slot. Ground plane
dimensions are the same as the substrate, the thickness is (20) nm.
Dimensions of MWSNA are shown in Table 3.6.
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Figure 3.14: a: MWSNA front view; b: MWSNA side view; c:
MWSNA bottom view; d: MWSNA perspective view.
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Table 3.6. MWSNA dimensions.

NO. dimensions Values (nm)
1 First slot Patch circle R1 125
2 Second slot Patch circle R2 275
g Third slot Patch circle R3 425
4 Fourth slot Patch circle R4 525
5 Thickness of patch, t 20
6 Distance between slots 150
7 Substrate width, W 1000
8 Substrate length, L 1000
9 Thickness of Substrate, h 50
10 Thickness of Ground, t 20
11 Ground width, Wg 1000
12 Ground length, Lg 1000

3.11 Analysis Formulation of the Microstrip Nanoantenna
Structures.

For all designs, and through the equations of length and width
of the Microstrip Antenna, we are able to calculate the length and
width using equations (3-1) and (3-2), so, the slightly manipulate the

extracted values to suit our new design [1].
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Actual width (W):

v, 2
W =

T 2fp Al Er+1

U,: free space velocity of light.
fr: resonant frequency.
& dielectric constant.

Actual length (L):

1
L=——m——m—..........
2fr\/ Ho€o+/ Ereff

reff. Effective dielectric constant.
Uo: 41 x 1077 H/m (permeability)
£ 8.8541878128(13)x107*? F-m™* (permittivity)

The effective dielectric constant for Microstrip antenna is given

by [49]:

+1 —1 1
Ereff =+ = (=) e (3.3)
h: thickness

ws: strip width
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CHAPTER FOUR

RESULTS, DICCUSSIONS AND PERFPRMANCE

4.1

4.2

EVALUATIONS

Introduction

In this chapter, the parameters of the Nanoantenna design will
be discussed generally. It includes the reflection coefficient,
Nanoantenna gain, Nanoantenna directivity, far-field radiation pattern,
bandwidth and 3-D far-field of designs.

After discussing the parameters, making a comparison between
the Hash-shape and Hash-shape Slot Nanoantenna, Bluetooth-shape
and Bluetooth-shape Slot Nanoantenna and Wi-Fi-shape and Wi-Fi-
shape Slot Nanoantenna. Finally, all designs model are compared to

choose the best ones.

Characteristics of the  Microstrip  Hash-shape
Nanoantenna and  Microstrip  Hash-shape  Slot
Nanoantenna.

4.2.1 Reflection Coefficient for MHNA & MHSNA.

For the two designs MHNA and MHSNA, the reflection
coefficients are illustrated in Figure 4.1 and Figure 4.2 respectively.
Reflection coefficients indicates that the first proposed Microstrip

Hash-shape Nanoantenna resonates at 129.44 THz with S;; -45.71
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dB

dB

dB, while the second proposed Microstrip Hash-shape Slot
Nanoantenna resonates at 129.74 THz with reflection coefficient
(S11) -14.19 dB. This gives a slight difference between the two

frequency bands as a result of the change in the shape of the patch.

S-Parameters [Magnitude in dB]

Results, Discussions and Performance Evaluations
T ——

Frequency / THz

Figure 4.2: S;; of MHSNA.
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4.2.2 Gain for MHNA & MHSNA.

The 3D & 2D plots for the gain of the MHNA and MHSNA
are shown in Figure 4.3 and Figure 4.4 respectively. So, the max
value of the gain is 6.45 dB at the resonant frequency 129.44 THz
for the MHNA, while the gain of the MHSNA is 5.73 dB at the
resonant frequency 129.74 THz. This gives an indication that the

gain of the first design larger than gain of second design by 0.72
dB.

oo ioms
o

NN RN S e T ey

e T
CILININI N DI 2 1 = 0 DV = WO Oy

COHR DO LI 00 O G =+

(@)

Farfield ‘"farfield (f=129.44) [1]" Gain_Abs Theta
: . : : : o

30

—————— 60

90

= 120

“odeeoeed 150

0 30 60 90 120 150 180 210 240 270 300 330 360 180
Phi

Frequency = 129.44 THz

Rad. effic. =-0.1388 dB
Tot. effic. =-1.514 dB
Gain = 6.434 dB

(b)
Figure 4.3: Gain of MHNA (a) 3D and (b) 2D.
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farfield (f=129.75) [1]
Type Farfield

Approximation ~ enabled (kR >> 1) Y
Component Abs

Output Gain

Frequency 129.75 THz X
Rad. effic. -0.7575 dB z

Tot, effic. -2498 dB

Gain 5731d8
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Figure 4.4: Gain of MHSNA (a) 3D and (b) 2D.
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4.2.3

farfield (f=129.44) [1]
Type Farfield

Approximation enabled (kR >>

Component  Abs
Output Directivity
Frequency 12944 THz
Rad. effic. -0.1090 dB
Tot. effic. -1463 dB
Dir. 6559 dBi

farfield (f=129.75) [1]

Type Farfield
Approximation enabled (kR >> 1)
Component Abs

OQutput Directivity
Frequengy 12975 THz

Rad. effic. -0.7575 dB

Tot. effic. -2.498 dB

Di 6.488 dBi

Directivity for MHNA & MHSNA.

The 3-D plot for Directivity are illustrated in Figure 4.5
for the MHNA and Figure 4.6 for MHSNA. The value of the
directivity is 6.56 dB at the resonant frequency 129.44 THz while
the value of the directivity at the resonant frequency 129.74 THz
IS 6.49 dB. Note that the MHNA design has more directivity than
the MHSNA design due to the form of the patch.
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Figure 4.6: Directivity of MHSNA.
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4.2.4 Current Distribution for MHNA & MHSNA.

In these proposed Nanoantennas, to get more insight about
the EM characteristics, the current distributions generated in the

Nanoantenna have been simulated in the two designs.

In MHNA, the form of current distribution at resonant
frequency 129.44 THz is shown in Figure 4.7 (a). Note that the
current distribution form is distributed from inside the patch and is
spread circularly outward. While the MHSNA design has a
resonant frequency 129.74 THz current distributed around the slot

of the Hash outward as shown in Figure 4.7 (b).

827 Srdbdisines | SO o s 883
S 80
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64
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() (b)

Figure 4.7: Current distribution, (2) MHNA & (b) MHSNA.
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4.2.5 Radiation Patterns for MHNA & MHSNA.

The polar plot for the MHNA and MHSNA radiation pattern

are shown in Figures 4.8 and 4.9 respectively.

For the MHNA, in the x-y plane (6 = 90°), the main lobe
magnitude is (5.35) dB, the main lobe direction is (293°), and the
angular width is (89.9°), in the y-z plane (¢ = 90°) the main lobe
magnitude is (19.8) dB, the main lobe direction is (0°), and the
angular width is (57.99), in the x-z plane (¢ = 0°) the main lobe
magnitude is (19.8) dB, the main lobe direction is (0°), and the
angular width is (73.1°).

In the MHSNA, the x-y plane (8 = 90°) the main lobe
magnitude is (-1.17) dB, the main lobe direction is (276°), and the
angular width is (86.3°), in the y-z plane (¢ = 90°) the main lobe
magnitude is (18.8) dB, the main lobe direction is (0°), and the
angular width is (64.8°), in the x-z plane (¢ = 0°) the main lobe
magnitude is (18.8) dB, the main lobe direction is (0°), and the
angular width is (78.4°).

All values described above are shown in Table 4.1.
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Figure 4.8: Radiation pattern of the MHNA at f=129.44 THz.
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Figure 4.9: Radiation pattern of the MHSNA at f=129.74 THz.
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Table 4.1: Characteristics of the far-field radiation pattern for the

MHNA & MHSNA.
reg. Parameter x-y plane | y-zplane | x-z plane
(TH2)
Main lobe magnitude (dB) 5.35 19.8 19.8
199.44 Main lobe direction (deg.) 293 0 0
Angular width (deg.) 89.9 57.9 73.1
Side lobe level (dB) 0 -15.2 0
Main lobe magnitude (dB) -1.17 18.8 18.8
Main lobe direction (deg.) 276 0 0
129.74
Angular width (deg.) 86.3 64.8 78.4
Side lobe level (dB) 0 0 0
4.2.6  Efficiency for MHNA & MHSNA.

The efficiency of MHNA is 98.32 %. It is calculated from
the relationship between the gain and directivity (which has
previously mentioned). The efficiency of MHSNA is 88.28 %. So,
based on these values, the MHNA design is more acceptable than
the MHSNA design.

4.2.7  Bandwidth for MHNA & MHSNA.

Depending on Figure 4.10, the bandwidth shows that the

Nanoantenna frequency band starts at frequency 125.3 THz to

frequency 133.3 THz, producing a bandwidth of approximately 8
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THz in the MHNA design. However, Figure 4.11, shows that the
Nanoantenna frequency band starts at frequency 126.39 THz and
ends at frequency 132.99 THz, producing a bandwidth of
approximately 6.6 THz. This gives another indicator of the MHNA
design producing the bandwidth much larger than the MHSNA

design.
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° 25 : : :
" qQ (128:44,45717)|: s s : s s 3 d=35.741
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Figure 4.10: Bandwidth of MHNA.
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Figure 4.11: Bandwidth of MHSNA.
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4.2.8 Validation between MHNA, MHSNA and other
references.

In this part of thesis, the references [50] and [51] with the two
proposed Nanoantennas (MHNA & MHSNA) in terms of the
parameters will be compared as shown in table 4.2. Their results are
calculated and extracted in this chapter. Where observed in the
reference that used in the comparison that there is resonated at a
high frequency while the reflection coefficient is somewhat

acceptable.

The directivity is smaller compared to the two proposed
Nanoantenna designs. Also, there is a high-bandwidth mention in the
references compared to the two proposed Nanoantenna designs, but
the dielectric constant of the silicon that is used by the reference
e=4.4 while the dielectric constant for the proposed Nanoantenna

designs is e=11.9..

Table 4.2: Comparison between MHNA, MHSNA and references.

Name | Sub.type| Su1 | f(THz) | G(dB) | D(dB) | Eff. | BW
Silicon

[50] | L5 | 4645|8685 | 203 | - | - | 2

[51] Glass -16 315 5.73 4

MHNA | S0 | 4571 | 120.44 | 645 | 656 | 98.32| 8

MHSNA| 51 | 1419 | 12074 | 573 | 649 |88.28 | 6.6
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4.3 Characteristics of the Microstrip Bluetooth-shape
Nanoantenna and Microstrip Bluetooth-shape Slot
Nanoantenna.

4.3.1 Reflection Coefficient for MBNA & MBSNA.

In these designs, the layout of the MBNA and MBSNA are
identified as shown in Figures 4.12 and 4.13 respectively. The
Microstrip Bluetooth-shape Nanoantenna resonates at 120 THz with
reflection coefficient Si; = -27.19 dB. But reflection coefficient for
the Microstrip Bluetooth-shape Slot Nanoantenna resonates at 133
THz with reflection coefficient S;; -25.18 dB. This shows how
accurate the resonant frequency is as a transient -10 dB in the Si;

Figures below.
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Figure 4.12: S1; of MBNA.
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Figure 4.13: S1; of MBSNA.

4.3.2 Gain for MBNA & MBSNA.

The shape of the MBNA gain is shown in Figure 4.14 where
its value is 5.36 dB, while the plot for gain of the MBSNA is 6.71
dB as shown in Figure 4.15. It is considered higher than the
MBNA design because of the different shape of the patch in the

two designs.
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Figure 4.14: Gain of MBNA (a) 3D and (b) 2D.
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Figure 4.15: Gain of MBSNA (a) 3D and (b) 2D.

4.3.3 Directivity for MBNA & MBSNA.

In these designs, the value of the Directivity to the MBNA
design is 5.47 dB as shown in Figure 4.16, while in the MBSNA
design the value is 6.79 dB as illustrated in Figure 4.17.

From the results above, we notice that the MBSNA design

has a higher directivity than the MBNA design and this makes it
more suitable in terms of reaching the radiation as far as possible.
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Figure 4.17: Directivity of MBSNA.
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4.3.4 Current Distribution for MBNA & MBSNA.

The current distribution for the MBNA is illustrated in Figure
4.18 (a). It is clear, based on the figure below, that the form of
distribution of the current spreads from the patch to the outside in a

rotational manner according to the form of Bluetooth.

The distribution of current for the MBSNA design is shown in
Figure 4.18 (b). Here, the current flows around the Bluetooth-shape
and never spreads in the slot. So, the current will be spread around the

slot depending on the method of spreading.
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Figure 4.18: Current distribution of (a) MBNA & (b) MBSNA.
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4.3.5 Radiation Patterns for MBNA & MBSNA.

The radiation patterns for the MBNA is shown in Figure 4.19.
For the resonant frequency 120 THz of the MBNA design, in the x-y
plane (6 = 90°), the value of main lobe magnitude is (-12.7) dB. The
main lobe direction is (258°) and the angular width is (80.3°). While in
the y-z plane (¢ = 90°), the main lobe magnitude is (19.8) dB. The
main lobe direction is (0°) and the angular width is (62.9°). But the x-z
plane (¢ = 0°) the main lobe magnitude is (19.8) dB. The main lobe
direction is (0°) and the angular width is (79.8°).

Here, the radiation values for the resonant frequency of 133
THz of the MBSNA design will be reviewed. Figure 4.20 shows the
radiation process in three cases. The first case is X-y plane (60 = 90°)
contain main lobe magnitude is (-18.7) dB; main lobe direction is (0°)
and the angular width is (88.9°). The second case is y-z plane (¢ =
90°) contain main lobe magnitude is (6.79) dB, main lobe direction is
(0°) and the angular width is (76.5°). The last case is x-z plane (¢ = 0°)
contain main lobe magnitude is (6.79) dB, main lobe direction is (0°)
and the angular width is (61.5°). Overall values of radiation to the
MBNA & MBSNA are shown in Table 4.3.
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Figure 4-19: Radiation pattern of the MBNA at =120 THz.
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Figure 4-20: Radiation pattern of the MBSNA at f=133 THz.

73



Chapter Four

—————

Results, Discussions and Performance Evaluations

Table 4.3: Characteristics of the far-field radiation pattern for the
MBNA & MBSNA.

Freq.
(TH2) Parameter x-y plane y-z plane | x-z plane
Main lobe magnitude (dB) -12.7 5.47 5.47
190 Main lobe direction (deg.) 258 0 0
Angular width (deg.) 80.3 62.9 79.8
Side lobe level (dB) 0 0 0
Main lobe magnitude (dB) -18.7 6.79 6.79
133 Main lobe direction (deg.) 0 0 0
Angular width (deg.) 88.9 76.5 61.5
Side lobe level (dB) -0.6 0 0

4.3.6 Efficiency for MBNA & MBSNA.

There is a relationship between the gain and directivity, as

mentioned in Chapter Three, shows how to extract the efficiency of the
Nanoantenna. So the efficiency of the MBNA design is 97.63 %, but
the efficiency of MBSNA design is 98.82 %. Since we find the
efficiency of the MBSNA design is higher than the MBNA design, this

gives us preference in terms of efficiency.

4.3.7 Bandwidth for MBNA & MBSNA.

The diagram bandwidth of the two designs is illustrated in
Figures 4.21 and 4.22. So the value of bandwidth to the MBNA design
Is 8.93 THz in the range that starts from frequency 115.54 THz and
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in MBSNA design the

frequency is 7 THz and the range begins from 128.97 THz to 135.97

THz. The results make the MBNA design includes a wide range of

frequencies over the MBSNA design.
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Figure 4.21: Bandwidth of MBNA.
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4.3.8 Validation between MBNA, MBSNA and other
references.

The second comparison of our work that compare a references
[52] and [53] with two proposed Nanoantennas (MBNA & MBSNA)
in terms of the parameters that were calculated and extracted their
results in this chapter as shown in table 4.4, where we observed in the
reference we used in the comparison that there is resonated at a low

frequency while the reflection coefficient was somewhat acceptable.

In the dielectric substrate in the reference Silicon nitrate with
Quartz is used, while the dielectric substrate for the proposed
Nanoantenna designs only silicon is used. The directivity is small
compared with the two proposed Nanoantenna designs. Also, there is
a low-bandwidth in the reference compared to the two proposed

Nanoantenna designs.

Table 4.4: Comparison between MBNA, MBSNA and references.

Name |Sub.type| Su |f(THz) | G(dB) | D(dB) | Eff. | BW
Silicon
52] | nitrate+ | 29© 50010 — | 38 | — | 2
22
Quartz
[53] Poggms'de 35 | 075 | 509 | 571 |89.14| -
MBNA | U0 | 2719| 120 | 536 | 547 | 9763 8.93
MBSNA | 1'% | 2518 | 133 | 671 | 679 |9882| 7
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4.4 Characteristics of the  Microstrip  Wi-Fi-shape
Nanoantenna and  Microstrip  Wi-Fi-shape  Slot
Nanoantenna.

4.4.1 Reflection Coefficient for MWNA & MWSNA.

The reflection coefficient shape is shown in Figures 4.23 and
4.24 for the two designs MWNA and MWSNA respectively. The
value of the first one is -31.33 dB resonates at 106 THz but the
second is -18.27 dB resonates at 126.28 THz. Here, the MWNA
design can be considered more accurate than MWSNA design due to

the descent of the frequency to the lower value in the S;; parameter.
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A
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Figure 4.23: S1: of MWNA.
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Figure 4.24: S1; of MWSNA.
4.4.2 Gain for MWNA & MWSNA.

The form of gain for the two designs MWNA and MWSNA is
shown in Figures 4.25 and 4.26 respectively. The value of the gain
to the MWNA design is 6.2 dB at the resonant frequency 106 THz.
While the value of the gain of the MWSNA design is 6.57 dB at the
resonant frequency 126.28 THz. In this case, the gain for the
MWSNA design is more valuable than the MWNA design. Thus, the

former design is preferred.
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Directivity for MWNA & MWSNA.

The value of directivity to the MWNA is 6.3 dB, while the
value of directivity to the MWSNA is 7.24 dB. These values are
illustrated in Figures 4.27 and 4.28 respectively.

In these two designs we note that the directivity value is high
and excellent. But in the MWSNA design, the highest guidance in all

the designs that are designed in this thesis.
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Figure 4.28: Directivity of MWSNA.
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444 Current Distribution for MWNA & MWSNA.

The simulated current distribution of the MWNA & MWSNA
designs at different frequencies is illustrated in Figure 4.29. So,
Figure 4.29 (a) shows the current distribution at the resonant
frequency 106 THz. We notice the spread of the current from the
middle of the patch towards the edges and in a manner similar to the

shape of the circle.

In Figure 4.29 (b), the form of current distribution at the
resonant frequency 126.28 THz is centered from the upper half of
the Nanoantenna and distributed from the patch without flow in the
Wi-Fi-shape slot. It is obvious that most of the current concentration
is in the upper patch of the MWSNA.

Figure 4.29: Current distribution of (a) MWNA & (b) MWSNA.

82



Chapter Four Results, Discussions and Performance Evaluations
(A T —

4.45 Radiation Patterns for MWNA & MWSNA.

As mentioned earlier, the radiation pattern is a variation in the
power radiated from the Nanoantenna as a function of the direction
away from the Nanoantenna. Overall values of radiation to the
MWNA & MWSNA are shown in Table 4.5. The radiation patterns
for the MWNA is shown in Figure 4.30. Resonant frequency of the
MWNA design is 106 THz, in the x-y plane (6 = 90°); the value of
main lobe magnitude is (-13.1) dB; the main lobe direction is (194°)
and the angular width is (86.4°). While in the y-z plane (¢ = 90°
represent E-plane), the main lobe magnitude is (6.3) dB, the main
lobe direction is (0°) and the angular width is (77.8°), but the x-z
plane (¢ = 0° represent H-plane) the main lobe magnitude is (6.3) dB;

the main lobe direction is (0°) and the angular width is (59.4°).

The MWSNA design of the radiation pattern resonates to its
resonant frequency 126.28 THz as in Figure 4.31. The radiation
process contains three planes. The first plane is x-y plane (6 = 90°);
contain main lobe magnitude is (-20.8) dB, main lobe direction is
(148°) and the angular width is (64.5°). The second plane is y-z plane
(¢ = 90°); contain main lobe magnitude is (7.24) dB; main lobe
direction is (1°) and the angular width is (76.4°). The last plane is x-z
plane (¢ = 0°) contain main lobe magnitude is (7.24) dB; main lobe
direction is (0°) and the angular width is (60.7°).
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Figure 4-30: Radiation pattern of the MWNA at =106 THz.
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Figure 4-31: Radiation pattern of the MWSNA at f=126.28 THz.
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Table 4.5: Characteristics of the far-field radiation pattern for the

MWNA & MWSNA.

Freq.
(TH2) Parameter x-y plane | y-zplane | x-z plane
Main lobe magnitude(dB) -13.1 6.3 6.3
106 Main lobe direction(deg.) 194 0 0
Angular width(deg.) 86.4 77.8 59.4
Side lobe level (dB) 0 0 -19.7
Main lobe magnitude(dB) -20.8 7.24 7.24
196.28 Main lobe direction(deg.) 148 1 0
Angular width(deg.) 64.5 76.4 60.7
Side lobe level (dB) 0 0 0
4.4.6 Efficiency for MWNA & MWSNA.

The value of efficiency to the MWNA design is 98.41 %. It is
calculated depending on the relationship between the gain and
directivity. Hence, the value of the efficiency in MBSNA design is
90.74 %. In these two designs, we find that the MWNA design is
more efficient than the MWSNA design based on the results
extracted from the above designs.

4.4.7 Bandwidth for MWNA & MWSNA.

Depending on the diagram shown in Figures 4.32 and 4.33 for
the MWNA and MWSNA respectively. The range of bandwidth
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starts from 103.31 THz and ends at frequency 110.31 THz for the
MWNA design producing a bandwidth 7 THz. However, the range
of bandwidth to the MWSNA design starts from frequency 124.53
THz and ends at frequency 127.85 THz, producing a bandwidth

Results, Discussions and Performance Evaluations

approximately 3.32 THz. When comparing the two designs, it

appears that the MWNA design has a wider range of frequencies

which can be used in several applications. In the MWSNA design

range is very few, making applications limited.
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Figure 4.32: Bandwidth of MWNA.
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Figure 4.33: Bandwidth of MWSNA.
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448 Validation between MWNA, MWSNA and other
references.

The third comparison that compared a reference and two
proposed Nanoantennas (MWNA & MWSNA) in terms of the
parameters with results that calculated in this chapter as shown in
table 4.6, where we observed in the reference we used in the
comparison that there is resonated at a low frequency while the
reflection coefficient was good.

In the dielectric substrate of the reference, silicon dioxide
SiO;

Nanoantenna designs only silicon is used. The directivity and gain

Is used. In the dielectric substrate for the proposed
are small compared with the two proposed Nanoantenna designs.
Also, there is a low-bandwidth in the reference compared to the two
proposed Nanoantenna designs. In terms of efficiency the
Nanoantenna is considered very close between reference and the two

proposed Nanoantenna designs.

Table 4.6: Comparison between MWNA, MWSNA and references.

Name f;lfé Su | f(THz) | G(dB) | D(dB) | Eff. | BW
Si0; 12.2 to

[54] o, | 2757 | Y34 | 53 | 532 9933 18
Crystal

[55] " 23 | 069 | 45 | 62 |7258| -
€=9.1

MWNA | Seon | a1 331 106 | 62 | 63 |9841| 7
€=11.9

MWSNA Sg:'lclog 1827 | 12628 | 657 | 7.24 |90.74 | 7
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4.5 Comparison between overall six proposed designs.

In this part of the chapter, we compare the proposed six
Nanoantennas in terms of parameters: reflection coefficient Sij,
resonant frequency, gain, directivity, efficiency, bandwidth and

application.

We observe the S;; varying from -14 dB to -45 dB depending
on the frequency band. All values are considered acceptable because
they exceed the -10 dB. The resonant frequencies bands start from 106
THz and end 133 THz.

The values of the gain start at 5.36 dB and end 6.71 dB while
the values of the directivity start at 5.47 dB and end 7.24 dB. The gain
and directivity of the six proposed Nanoantennas are very good

compared with the previous work.

The values of the efficiency of the six proposed Nanoantennas
are very good compared with the previous work, therefore we obtain
the high efficiency 98.82 % to the MBSNA, while the low efficiency
is 88.28 % to the MHSNA. The MBNA has the highest bandwidth
while the MHSNA has the lowest bandwidth.
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In the Figure 4.34 below show the values of the six proposed

nanoantennas.
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Figure 4.34: values of six proposed nanoantennas.
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CHAPTER FIVE

CONCLUSIONS AND SUGGESTIONS FOR FUTURE

5.1

5.2

WORK

Introduction

In this chapter, the most important goals of the work will be
reviewed, as well as the conclusion obtained from the proposed
designs. Besides, highlight on the recommendations for the future

work.

Conclusion

In this section, the associated comments about the six-design
methodologies of Microstrip patch antennas are presented. These six
Nanoantennas are proposed with different geometrical shapes to
demonstrate the effect of the geometrical shape of the patch layer of
Microstrip Nanoantenna on the antenna performance, such as
reflection coefficient Si1;, bandwidth, Directivity, current distribution,
efficiency and gain. So, the first and second Microstrip Nanoantenna
designs take the form of Hash-shape and Hash-shape Slot. So they are
called Microstrip Hash-shape Nanoantenna (MHNA) and Microstrip
Hash-shape Slot Nanoantenna (MHSNA). These Nanoantennas give a
range of bandwidth (125.3 - 133.3) THz and (126.39 - 132.99) THz

respectively.
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5.3

The third and fourth Microstrip Nanoantenna designs take the
form of Bluetooth-shape and Bluetooth-shape Slot. Thus they are
called Microstrip Bluetooth-shape Nanoantenna (MBNA) and
Microstrip Bluetooth-shape Slot Nanoantenna (MBSNA). These
Nanoantennas give a range of bandwidth of (115.54 - 124.47) THz
and (128.97 - 135.97) THz respectively. Also, the fifth and sixth
Microstrip Nanoantenna designs take the form of Wi-Fi-shape and
Wi-Fi-shape Slot. They are called Microstrip Wi-Fi-shape
Nanoantenna (MWNA) and Microstrip Wi-Fi-shape Slot Nanoantenna
(MWSNA). Indeed, these Nanoantennas operate in the range of
bandwidth from (103.31 - 110.31) THz and (103.31 - 110.31) THz

respectively.
Finally, concluding that the best design is the MBNA according

to the highest bandwidth and the MWSNA according to the highest

directivity.

Suggestions for the Future Work

The suggestions for the future scope can be reviewed as follows:-
1. Design other shapes of Microstrip patch Nanoantenna and

obtain their characteristics, trying to enlarge the gain and
bandwidth.

93



Chapter Five Conclusions and Suggestions for Future Work
(A T —

2. Use another type of feeding technique and compare the results

with the results that are presented in this work.

3. Design a Microstrip Nanoantennas array to modify the gain to

be suitable for applications that need high Bandwidth.
4. Try to fabricate one of the designs mentioned in the previous
work because fabrication is not available currently neither in

Irag nor in neighboring countries.

5. Try to make a mathematical analysis of the Microstrip

Nanoantenna designs.
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