

Sit Share where we we have been a share of the

المر خلبة الأوني

المعطمة الاستحطاني الشماط فجي المعادم الشراشعجي

<mark>4 * 17-</mark>4 * 10

الشور الأول

			السيارات
0	Ministry of Higher Educa Al-Furat Al-Awsat Tech. Eng. Collage – Najaf/ 1 st try Final exan	tion and Scientific Researc Technical University Automobile Tech. Eng. De hination(2015-2016)	ept. Class: 1 st year
ubject: Thermodynar	mic		Date: / 5 / 2016
Time: 3 hours	es// 1. Please read the question	s carefully, 2. Answer all q	uestions
Iseful data:(g = 9.81	m/s ² , density of mercury (H	lg) : ρ _{Hg} =13595 kg/m ³ , Fo	or ideal gas air : K=1.4,
R= 0.287 kJ/kg .K, Cp=	=1.005 kJ/kg .K, Cv=0.718 kJ/ ******	′kg .K) . ***********************************	****
21.\\ Which one of t	hese (A, B, C, D) is the correc	ct answer? Please read ca	arefully? (20%)
1. In an isolated system	em there is:	B. operav transfer	
A. no mass transfer.		D both mass and end	erøv transfer
C. neither mass nor e	energy transfer	D, DOLL Mass and the	
2. The atmospheric p	pressure is highly dependent	C temperature D, el	levation
A. mass	beat of vanorization(he) o	of a substance increases a	as:
3. The specific latent	Temperature	Pressure	
Δ	constant	increase	
R	increase	constant	
D,	increase	increase	
	decrease	decrease	
if the heat input is 1 A. 83.3 kW	B. 77.3 kW C.	66.4 kW D. 57.	3 kW
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. $p.v = constant$, if C. $v/T = constant$, if 6. Estimate the entit	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and	66.4 kW D. 57. gases: B. p/T = constant D.T/p = constant 2 MPa: 2072 k1/kg D. 369	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg
<pre>if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the entl A. 2931 kJ/kg</pre>	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2	66.4 kW D. 57. gases: B. $p/T = constant D.T/p = constant 2 MPa: 2972 kJ/kg D. 369 A \rightarrow B \rightarrow C \rightarrow A. The work$	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg
 if the heat input is 1 A. 83.3 kW 5. For an ideal gas , A. p.v = constant , if C. v/T = constant, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is taken the choice 	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2 aken through a closed path ange of state from A to B is:	66.4 kW D. 57. gases: B. $p/T = constant D.T/p = constant 2 MPa: 2972 kJ/kg D. 369 A \rightarrow B \rightarrow C \rightarrow A. The work$	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa)
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the entl A. 2931 kJ/kg 7. An ideal gas is ta done during the cha	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2 aken through a closed path ange of state from A to B is:	66.4 kW D. 57. gases: B. $p/T = constant D. T/p = constant2 MPa:2972 kJ/kg D. 369A \rightarrow B \rightarrow C \rightarrow A. The work$	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) 800 B
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. $p.v = constant$, if C. $v/T = constant$, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is tak done during the char A zero	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2 aken through a closed path ange of state from A to B is:	66.4 kW D. 57. gases: B. $p/T = constant D.T/p = constant 2 MPa: 2972 kJ/kg D. 369 A \rightarrow B \rightarrow C \rightarrow A. The work$	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) 800 600
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is ta done during the cha A. zero B. 1.6 kJ	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2 aken through a closed path ange of state from A to B is:	66.4 kW D. 57. gases: B. p/T = constant D.T/p = constant 2 MPa: 2972 kJ/kg D. 369 A-→B-→C-→A. The work	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) 800 600 400 B C
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is ta done during the cha A. zero B. 1.6 kJ C. 0.8 kJ	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2 aken through a closed path ange of state from A to B is:	66.4 kW D. 57. gases: B. p/T = constant D.T/p = constant 2 MPa: 2972 kJ/kg D. 369 A-→B-→C-→A. The work	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) 800 600 400 200
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is ta done during the cha A. zero B. 1.6 kJ C. 0.8 kJ D. 2.4 kJ	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2 aken through a closed path ange of state from A to B is:	66.4 kW D. 57. gases: B. p/T = constant D.T/p = constant 2 MPa: 2972 kJ/kg D. 369 A-→B-→C-→A. The work	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) 800 400 200 0 2 4 6 8 10 v (m ³)
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is ta done during the cha A. zero B. 1.6 kJ C. 0.8 kJ D. 2.4 kJ	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2 aken through a closed path ange of state from A to B is:	66.4 kW D. 57. gases: B. p/T = constant D.T/p = constant 2 MPa: 2972 kJ/kg D. 369 A-→B-→C-→A. The work	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) B C C C C C C C C C C C C C C C C C C C
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is ta done during the cha A. zero B. 1.6 kJ C. 0.8 kJ D. 2.4 kJ 8. Estimate the ent A. 2.9518 kJ/kg 9. Which of the following	tropy of steam at T=220 °C, B. 3.2725 kJ/kg	66.4 kW D. 57. gases: B. p/T = constant D.T/p = constant 2 MPa: 2972 kJ/kg D. 369 A→B→C→A. The work and P=5000 kPa: C. 2.5127kJ/kg mic property?	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) B C C C C C C C C C C C C C C C C C C C
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is ta done during the cha A. zero B. 1.6 kJ C. 0.8 kJ D. 2.4 kJ 8. Estimate the ent A. 2.9518 kJ/kg 9. Which of the fol A. pressure	tropy of steam at T=220 °C , B. 3.2725 kJ/kg bis kept constant. bis kept constant. bis kept constant. bis kept constant. bis kept constant. bis 3957 kJ/kg c. 2 bis constant constant constant constant constant bis constant constant constant constant bis constant constant constant co	66.4 kW D. 57. gases: B. $p/T = constant D. T/p = constant2 MPa:2972 kJ/kg D. 369A->B->C->A. The workand P=5000 kPa:C. 2.5127kJ/kgmic property?C. heat$	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) B C C C C C C C C C C C C C C C C C C C
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is ta done during the cha A. zero B. 1.6 kJ C. 0.8 kJ D. 2.4 kJ 8. Estimate the ent A. 2.9518 kJ/kg 9. Which of the fol A. pressure 10. A sample of an by the P-V diagrant the following is true by the gas during 1	 b) KJ/S. B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg c. 2 aken through a closed path ange of state from A to B is: tropy of steam at T=220 °C, B. 3.2725 kJ/kg lowing is not a thermodyna B. temperature. n ideal gas taken through a m. The process 1-2 is perfected about the change in intertact the process 1-2? 	66.4 kW D. 57. gases: B. $p/T = constant D. T/p = constant2 MPa:2972 kJ/kg D. 369A->B->C->A. The workand P=5000 kPa:C. 2.5127kJ/kgmic property?C. heatc. cosed cycle is presentedexcly isothermal. Which ormal energy and work dor$	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) 600 600 600 2 4 6 8 10 v (m ³) D. 2.7654kJ/kg D. specific volume
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is ta done during the cha A. zero B. 1.6 kJ C. 0.8 kJ D. 2.4 kJ 8. Estimate the ent A. 2.9518 kJ/kg 9. Which of the fol A. pressure 10. A sample of an by the P-V diagrant the following is true by the gas during the A. $\Delta \cup = 0$ Wbyth	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2 aken through a closed path ange of state from A to B is: tropy of steam at T=220 °C, B. 3.2725 kJ/kg lowing is not a thermodyna B. temperature. n ideal gas taken through a m. The process 1-2 is perfect the process 1-2? the gas > 0	66.4 kW D. 57. gases: B. $p/T = constant D. T/p = constant2 MPa:2972 kJ/kg D. 369A->B->C->A. The workand P=5000 kPa:C. 2.5127kJ/kgmic property?C. heatc. closed cycle is presentedextly isothermal. Which ofmal energy and work dor$	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) 600 0 2 4 6 8 10 v (m ³) D. 2.7654kJ/kg D. specific volume
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the entl A. 2931 kJ/kg 7. An ideal gas is ta done during the cha A. zero B. 1.6 kJ C. 0.8 kJ D. 2.4 kJ 8. Estimate the ent A. 2.9518 kJ/kg 9. Which of the fol A. pressure 10. A sample of an by the P-V diagram the following is true by the gas during the A. $\Delta \cup = 0$ Wbythe B. $\Delta \cup > 0$ Wbythe	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2 aken through a closed path ange of state from A to B is: tropy of steam at T=220 °C, B. 3.2725 kJ/kg lowing is not a thermodyna B. temperature. n ideal gas taken through a m. The process 1-2 is perfe- ue about the change in inter the gas > 0 the gas = 0	66.4 kW D. 57. gases: B. $p/T = constant D. T/p = constant2 MPa:2972 kJ/kg D. 369A->B->C->A. The workand P=5000 kPa:C. 2.5127kJ/kgmic property?C. heatc. closed cycle is presentedectly isothermal. Which ormal energy and work dor$	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) $B = \int_{A} C$ $C = \int_{C} C$ $C = \int_{C} C$ D = 2.7654kJ/kg D. specific volume $C = \int_{C} D$ $D = \int_{C} C$ $D = \int_$
if the heat input is 1 A. 83.3 kW 5. For an ideal gas, A. p.v = constant, if C. v/T = constant, if 6. Estimate the enth A. 2931 kJ/kg 7. An ideal gas is ta done during the cha A. zero B. 1.6 kJ C. 0.8 kJ D. 2.4 kJ 8. Estimate the ent A. 2.9518 kJ/kg 9. Which of the fol A. pressure 10. A sample of an by the P-V diagrant the following is true by the gas during the A. $\Delta \cup = 0$ Wby the B. $\Delta \cup > 0$ Wby the C. $\Delta \cup < 0$ Wby the	B. 77.3 kW C. according to Charles law of <i>T</i> is kept constant. p is kept constant. halpy of steam at 600°C and B. 3957 kJ/kg C. 2 aken through a closed path ange of state from A to B is: tropy of steam at T=220 °C, B. 3.2725 kJ/kg lowing is not a thermodyna B. temperature. n ideal gas taken through a m. The process 1-2 is perfected about the change in inter the gas > 0 the gas < 0 the gas < 0	66.4 kW D. 57. gases: B. $p/T = constant D. T/p = constant2 MPa:2972 kJ/kg D. 369A->B->C->A. The workand P=5000 kPa:C. 2.5127kJ/kgmic property?C. heatclosed cycle is presentedextly isothermal. Which ormal energy and work dor$	3 kW t, if v is kept constant t, if v is kept constant. 90.7 kJ/kg P (Pa) 600 0 2 4 6 8 10 v (m ³) D. 2.7654kJ/kg D. specific volume ed of he

Ministry of Higher Education and Scientific Research Al-Furat Al-Awsat Technical University Tech. Eng. Collage – Najaf/ Automobile Tech. Eng. Dept. 1st try Final examination(2015-2016)

Subject: Thermodynamic Time: 3 hours

Class: 1st year Date: /5/2016

Notes// 1. Please read the questions carefully, 2. Answer all questions

Q2. [] The pressure of steam inside a boiler is recorded by a pressure gauge as 1.2 N/mm^2 . If the barometer reads the atmospheric pressure as 770 mm of Hg, find the absolute pressure of steam inside the boiler in N/m², kPa and bar. (15%)

Q3\\ Show that (For only three):

A)
$$W_{in} = m(h_2 - h_1)$$
[For input power of compressor]
B) $C_p - C_v = R$ [For an ideal gas]

C)
$$\Delta S = C_p \ln \left(\frac{T_2}{T_1} \right) - R \ln \frac{P_{21}}{P_1}$$
 For an ideal gas during constant pressure process]

D)
$$\eta_{carnot} = 1 - \left(\frac{T_b}{T_H}\right)$$
 [For simple Carnot cycle]

Q4. \\ Answer only Two branches:

(20%)

(15%)

<u>A\\</u> Complete the following table for <u>Refrigerant 134a</u>:

T(°C)	P(kpa)	u (kJ/kg)	Phase Description
-38			Saturated liquid
	8.0	94.79	All and an array of All and a
65			Saturated vapor
110	320		and the second second second
	2500	186.99	

<u>B\\</u> One kilogram of steam with a quality of 20 percent is heated at a constant pressure of 200 kPa until the temperature reaches 400° C. Calculate the work done by the steam.

<u>C</u>\\ Calculate the work necessary to compress air in an insulated cylinder from a volume of 2 m3 to a volume of 0.2 m3. The initial temperature and pressure are 20° C and 200 kPa, respectively.

Ministry of Higher Education and Scientific Research Al-Furat Al-Awsat Technical University Tech. Eng. Collage - Najaf/ Automobile Tech. Eng. Dept. 1st try Final examination(2015-2016)

Subject: Thermodynamic **Time: 3 hours**

Class: 1st year Date: /5/2016 Notes// 1. Please read the questions carefully, 2. Answer all questions

Q5. \\ Answer only Two branches:

(20%)<u>A\\</u> Α cylinder is initially filled with saturated water vapor (1.2)kg) at 200°C, Heat is transfered to the steam and it expands isothermally until pressure reaches (800 kpa) ,Determine the heat transfer and the work output for the process.

B\\ Air at 10°C and 80 kPa enters the diffuser of a jet engine steadily with a velocity of 200 m/s. The inlet area of the diffuser is 0.4 m2. The air leaves the diffuser with a velocity that is very small compared with the inlet velocity. Determine (a) the mass flow rate of the air and (b) the temperature of the air leaving the diffuser.

<u>C\\</u> Complete the following table <u>for water</u>:

Т(°С)	P (kpa)	h (kJ/kg)	Phase Description, x =, if applicable
	1500	844.55	an a statement and places a family for containing and the containing and the statement of advances (00 formation of the
135		2455.5	
	5000		Saturated vapor, x=
	3500	3338.1	
180	5000	and the second s	,

Q6\\ Carnot heat Α engine, receives 500 kJ of heat per cycle from a high-temperature source at 652°C and rejects heat to a low-temperature sink at 30°C. Determine (a) the thermal efficiency of this Carnot engine and (b) the amount of heat rejected to the sink per cycle. (10%)

www. With Best Wishes www.www.www.www.www.www.

Lecture/Salah M.S.

Head of Dept

VNNNNNNNNNN

Technical College of Najaf Automotive Department

Subject: Automotive Materials Class: 1nd Stage

فتس السيارات معالم

(10D)

.. Examiner: Oraskhudayer

First Attempt (2015-2016) Time : hrs

Q1/(A) Compare the Cu-Zn and Cu-Ni ranges of alloys from the following aspects where applicable : (a) effects of additional alloying elements, (b) typical compositions and (6D)uses, (c) effect of heat treatment .?

(B)Discuss the reasons why copper-base alloys have tended to be replaced by other materials during the past twenty years ago or so? (5 D)

(C) Describe the effects of alloying on the following properties with respect to copper:

(a) electrical conductivity, (b) machinability, (c) formability, (d) corrosion – resistance

(e) mechanical strength?

(D) Write an account of the ways in which the properties of copper may be made suitable for particular industrial applications by the addition of small amounts of an alloying element, Indicate the composition, condition and an appropriate application for all types (9 D)of copper ?

A Choose ane and y

Q2/A number of alloys of copper are called (bronzes). Give the slandered composition, properties and a suitable application for each of four (bronzes) containing different principle alloying elements other than tin? (20D)

B Define the impact test? (200)

-anti-

Q3/What are the important physical properties of metals and alloys?(25 D)

B Show the force extension allagram of a carbons

Q4/Define the following terms : (1) toughness. (2) hardness. (3) tensile strength .

(4) ductility. Describe briefly the tests you would employ to measure these properties?

(25 D)

المرحلة: الأولى

Ministry of Higher Education and Scientific Research Al-Furat Al-Awsat Technical University Tech. Eng. College – Najaf/Automobile Tech. Eng. Dept. Final examination 2016

Subject: Mathematics Time: 3 hours

Class: 1st year. Date: / /2016.

<u>Note//</u> Answer all question.

Q1):

(CB)

A) Find the area bounded by the curves:

$$y = x^2$$
 and $y =$

B) Assume:

$$A = \begin{bmatrix} 3 & 2 & 5 \\ 2 & -1 & 4 \\ 5 & 4 & 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 & -1 & 0 \\ 5 & 4 & 3 \\ 2 & 1 & -1 \end{bmatrix}$$

Show that: (A+B)' = A' + B'

Q2) Evaluate *five* of the following integrals:

1.
$$\int \frac{x+3}{\sqrt{x^2+6x}} dx$$

2.
$$\int \tan^3(x) dx$$

3.
$$\int \frac{y}{y^4 + 1} dy$$

4.
$$\int \frac{1}{x \ln x} dx$$

5.
$$\int e^{2x} \cosh(e^{2x}) dx$$

6.
$$\int \frac{\sinh(x)}{\cosh^4(x)} dx$$

Q3) Prove that:

$$1-\int x^3 e^{\frac{1}{2}} dx = e^{\frac{1}{2}} (2x^3 - 12x^2 + 48x - 96) + c$$

2-
$$x \sec^2(x) dx = x \tan(x) + \ln \cos(x) + c$$

3-
$$\int \sin^4(\theta) d\theta = \frac{3}{8}\theta - \frac{1}{4}\sin(2\theta) + \frac{1}{32}\sin(4\theta) + c$$

4-
$$\int \sin^3(x) dx = -\cos(x) + \frac{1}{3}\cos^3(x) + c$$

(20 marks)

(20 marks)

فسم المسيارات سر/ \$

(20 marks)

 \sqrt{x}

Ministry of Higher Education and Scientific Research Al-Furat Al-Awsat Technical University Tech. Eng. College – Najaf/Automobile Tech. Eng. Dept. Final examination 2016

Subject: Mathematics Time: 3 hours

Class: 1st year. Date: / /2016.

(40 marks)

Note// Answer all question.

Q4):

- A) Find the nth order derivative of the sine function y = sin(x)?
- **B)** Find $\frac{dy}{dx}$ for *two* of the following functions:
 - 1. $y = \sin^{-1}(\frac{5x}{6})$ 2. $y = (\frac{\csc(x)}{\sqrt{x}})$

3.
$$x = 1 + y^{-3}$$

() Find dy for <u>one</u> of the following functions:

1.
$$y = \frac{(x^4 - 2)^3}{5x - 1}$$

2. $y = (\frac{1}{x^2 + x} + 1)^2$

HA An Us mp e.r

د. تحطاما در ارا ما عد

stolup.s

1100 وزارة التعليم العالى والبحث العلمى جامعة الفرات الاوسط التقنية الكلية التقنية الهندسة النجف

المادة المرحلة : الاولى الوقت : ثلاث ساعات مدرس المادة :م.م. بسام عبد الصاحب

INIVER 1

امتحان النهائي الدور الأول 2016-2016

امتحان الرسم الهندسي

30 درجة

س]: ارسم الشكل ادناه

منهم السيارات

SHAFT SUPPORT

س2: ارسم المقطع الامامي مقطوع مسقط جانبي مسقط افقي للشكل ادناه 35 درجة 2 HOLES. 1 DIA 12 10 Ø 83

35 درجة

س3: ارسم الشكل ادناه رسم مجسم بطريقة (Isometric)

المرحلة: الأولى		یسم السیارات ۱/۲۰۰
المرحلة: الاولى		وزارة التعليم العالي و البحث العلمي
المادة: الميكانيك	(ACCOUNT OF A	جامعة الفرات الاوسط التقنية
الزمن: ثلاث ساعات	1. (9)	الكلية التقنية الهندسية النجف
الممتحن: د. حيدر حسن عبد	Non sold	قسم هندسة تقنية الطيران
	الدور الاول 2015-2016	

Note: Answer all questions.

Q1) Determine the magnitude of the force acting along the axis of each of three struts needed to support the 900kg block as shown in Figure 1. (20 degree)

Q2) For the Figure 2 below, determine the force on all members for two of the structures a, b, and c. (20 degree)

Figure 2(a, b, c)

Q3) The coefficients of friction are $\mu_s = 0.40$ and $\mu_k = 0.30$ between all surfaces of contact in Figure 3. Determine the smallest force **P** required to start the 30-kg block moving if cable *AB* (*a*) is attached as shown, (*b*) is removed (c) if the ground surface was inclined by 20°. (20 degree)

Figure 3

Q4) For the Figure 4 below, find the centroid and determine the moment of inertia about x, y

Q5) Block A supports a pipe column and rests as shown on wedge B in Figure 5. The coefficient of static friction at all surfaces of contact is 0.25. If $\mathbf{P} = 0$, determine (a) the angle Θ for which sliding is impending, (b) the corresponding force exerted on the block by the vertical wall.

Figure 5

feat ment

Ass. Prof. Dr. Ali Shaker

Lecturer

Dr. Hyder H. Balla

المرحلة: الأولى

Ministry of Higher Education and Scientific Research Al-Furat Al-Awsat Technical University Tech. Eng. College – Najaf/Automobile Tech. Eng. Dept. Final examination 2015-2016

Subject: Dos and Windows Time: 3 hours

Class: 1st year Date: /5/2016

Notes// 1. Please read the questions carefully, 2. Answer all question

Windows

Q1: Choose the correct answer for the following sentences? 1. All of the following are examples of input devices except: a. Scanner b. Mouse c. Printer d. Keyboard 2. All of the following are examples of real security and privacy risks except: a. Viruses b. Identity theft c. Hackers d. Spam 3. Which of the following is an input device? a. Mouse b. Keyboard c. Scanner d. All the above 4. The set of instructions that tells the computer what to do is a. Softcopy b. Software c. Hardware d. Hardcopy 5. Which of the following stores more data? a. DVD b. CD ROM c. Floppy Disk d. CD RW 6. ---- is the heart of the computer and this is where all the computing is done. a. Keyboard b. Monitor c. Central Processing Unit d. Printer 7. To move forward through the tabs a. CTRL+TAB b. CTRL+SHIFT+TAB c. SHIFT+TAB d. None of these (14 degree) Q2: How can you restore the delete file from Recycle Bin? (6 degree) Q3: Write the types of connection for any device with your computer? (8 degree) Q4: How can you make the file in computer is hidden? (7 degree) Q5: How can you insert picture in the word program? (5 degree)

Q6: Write the stages of the format and installing the windows on the computer ? (10 degree)

♣♣ Good Luck ♣♣

Dr. Eng. Mahdi Hatf Kadhum Examiner

MS Dos, hardware and software

Q7/ Give the full terms of the following abbreviations: (20M)

I) CPU	
3) OCR	2)PPM
5) Pixels	4) CD-ROM
7) LCD	6) DVD
9) MP	8) DOS
-) atal	 10) FAT

Q8/Write the following commands (15M) (Choose five only)

- 1. Remove Directory Techcollege
- 2. Delete all file except Techcollege
- 3. Change Directory AlNajaf
- 4. Make DirectoryAli
- 5. Copy all file in drive (c) to drive (d)
- 6. Delete all the file
- 7. Move the file Ali from directory Ahmed to directory Amjed

Q9/What the difference between: (15M)

- 1. The hardware and software
- 2. RAM and ROM
- 3. Windows and Ms-Dos
- 4. Hard disc and CD
- 5. Minicomputer and Mainframe computers.

Lecture Basil Noori Merzah

With my best wishes

Head of department Dr. Haider Hassan

متم السيارات ١١٠٠ القسم : هندسة تقنيات السيارات جمهورية العراق المرحلة : الاولى وزارة التعليم العالى والبحث العلمي المادة: دوائر كهربائية هيئة التعليم التقنى زمن الامتحان: ثلاث ساعات جامعة الفرات الأوسط التقنية التاريخ: / /2016 الكلية التقنية الهندسية / نجف امتحان الدور الأول- العام الدراسي 2016/2015

(20 mark)

Note: Answer only 4(Four) questions

Q1/Determine I and V in the circuit shown in below :

Q2/By using Kirchhoff's Voltage law determine Vx1 and Vx2 for the network in Fig.2 (25 mark)

Q3/By using Kirchhoff's current law ,Find the magnitude and direction of the currents *I*1, *I*2, and *I*3 for the network of Fig. 3.

page: 1/2

Fig.2

Q4/Using the information provided in Fig. 4, find the branch resistors R1 and R3, the total resistance RT, and the voltage source E. (25 mark)

Q5/Find E, I, I_2 , I_3 and R for the circuit of Fig. 5 using the information provided. (25 mark)

مدرس المادة: احسان عبد الكريم

رئيس القسم : د حيدر حسن