
Dispersion for a Rectangular WG 
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ii) If f>fc,  is real and 2 2 2

ck k  . 

 

DEGENERATE MODES 

In WG’s, several modes with different configurations have the cutoff frequency. These are called 

degenerate modes. It can be seen that in a waveguide the possible TEmn and TMmn modes are always 

degenerate. The waveguide dimensions are always selected in a way that only the desired mode 

(generally TE10 or TM11) propagate and higher modes are not supported. 

TEH DOMINANT MODE (TE10 MODE) 

With m=1 and n=0 , we get the dominant mode with the lowest cutoff frequency.
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Note that the cutoff wavenumber, cutoff frequency, cut off wavelength all depends on the geometry. 

 

The Field Components of the Dominant Mode 
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We see that the field components are independent of y. Only the y-directed component of the electric 

field exists and has a simple sinusoidal variation of strength across the width of the WG. The magnetic 

field exits in the closed loops in the x-z plane and the whole field pattern moves along the WG at the 

phase velocity
p gv f





  . 

The electric field lines terminate in electric charges in the walls of the WG. As the wave travels along hte 

WG, the currents in the WG walls redistribute these charges so that the electric field always correctly 

terminated. 



 

 

Field lines corresponding to TE10 MODE 

 

 

 

The Surface Currents on the walls of the WG (TE10 Mode) 

The surface current density on a perfect conductor is: 

ˆ
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On x=a wall,   
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On y=0 wall,   
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On y=b wall, 
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The surface charge density s can be determined from ˆ.s n D  , 

On x=0 wall, 
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On x=a wall,  
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On y=0 wall,  
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On y=b wall, 
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     Surface current on waveguide walls for TE10 mode. 

The current is redistributing the charge in order to support the electric field intensity one quarter of a 

cycle later.  

Power Flow down the Waveguide (TE10 Mode) 

The time- average power per unit area is: 
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For a propagating mode   is real, so 
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The power crossing the WG cross-section: 
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Characteristic Impedance of a Waveguide 

In order to apply the transmission line theory to WG’s, we must be able to determine  or
g as well as 

the characteristic impedance 0Z of the particular guide configuration. We have,
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Define: 
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 ,where V  is the voltage between the conductors and I  is the conduction current in the 

propagation direction for the traveling wave. For TEM lines 0Z is uniquely defined since the value of 

.V E dl   is independent of the integration path. In the WG case, V  is a function of the integration 

path. 

 

 

 

 

 



 

For the dominant TE10 mode 
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ATTENUATION in a WAVEGUIDE 

Attenuation in a WG can be caused by either dielectric loss and/or conductor loss. If d is the 

attenuation constant due to dielectric loss and c is the attenuation constant due to the conductor loss, 

then the total attenuation constant is: 

c d     

If the WG is completely filled with a homogeneous dielectric the attenuation can be calculated from the 

propagation constant and this result applies to any guide with a homogeneous dielectric filling the 

guide. 2 *2
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PERTURBATION METHOD FOR CALCULATING ATTENUATION DUE TO CONDUCTOR LOSS 

The method uses the fields of the lossess line, with the assumption that the fields of the lossy line are 

not greatly different from the fields of the lossless line. 

The power flow along a lossy TL, in the absence of reflections: 
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Where 0P is the power at z=0 plane and  is the attenuation constant to be determined. Now, define 

the power loss per unit length along the line as: 
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Where the (-) sign on the derivative was chosen so that lP would be a positive quantity. Then, 
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The power loss per unit length due to finite wall conductivity is: 
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Rs=the wall surface resistance. 

C=integration contour which encloses the perimeter of the guide walls. 

 

TM MODES 
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The other field components are: 
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If either m or n is zero, the fields vanish identically. So there are no TM00, TM01 or TM01 modes. 

The lowest order TM mode is the TM11 mode with: 
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Since cf of the lowest order TM mode is greater than the cf of the lowest order TE mode, TE10 is the 

lowest among all modes. 

 

The wave-impedance 
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