Integrated Circuits Design by
FPGA

Gl e Bga daaf aa

ciad [dpwdigl) ARt A0S / AR Ja oY) <l 8l Aaaly

_ecture 10

Packages and Components

Objectives of this Lecture

* To define the new terms Packages and Components

» To understand the code structure of Packages and Components.

» To Implement examples using Packages and Components.

Contents of this Lecture

* Introduction

- PACKAGE

+ COMPONEN

Introduction

Code structure: library declarations, entity, architecture (Lecture 1)
VHDL Data Classes and Data Types (Lecture 2)

VHDL Parallel Code (Lecture 4)
VHDL Sequential Code (Lecture 5 & Lecture 6)
Design of Finite State Machines (FSM) (Lecture 8)

Introduction

Figure 10.1
Fundamental units of VHDL code.

Main code LIBRARY
PACKAGE
Library 5
declarations ’ COMPONENT
FUNCTION
ENTITY PROCEDURE
ARCHITECTURE

Introduction

Packages

Lecture 10 & 11
Components

Functions
Lecture 12 & 13

Procedures

Introduction

These new units can be located in the main code itself (that is, on the left-
hand side of figure 10.1)

However, since their main purpose Is to allow common pieces of code to be
reused and shared, it iIs more usual to place them in a LIBRARY.

This also leads to code partitioning, which is helpful when dealing with long
codes.

In summary, frequently used pieces of code can be written In the form of
COMPONENTS, FUNCTIONS, or PROCEDURES, then placed In a
PACKAGE, which is finally compiled into the destination LIBRARY.

We have already seen that at least two LIBRARIES are generally needed In a
design: ieee, and work.

After studying lectures 10 to 13, we will be able to construct our own
libraries, which can then be added to the list above.

Introduction

For example, commonly used circuits, like flip-flops, multiplexers, adders,
logic gates, etc., can be placed in a LIBRARY, so any project can make use of
them without having to explicitly rewrite such codes.

a(0) —
LIBRARY lecee;
USE ieee.std logic 1164.all; b(0) —

_END and?2;
__ a(2) —
9 ARCHITECTURE and2 OF and2 IS X(2)
10 =BEGIN b(2) —
11 TX <= a and b;

12 END and2: a(3)

4 SENTITY and2 IS a(l) —
5 ZPORT (a, b: IN std logic vector (3 downto 0); X(1)
6 }X: OUT std logic vector (3 downto 0)); b(1) —

PACKAGE

We start by describing the structure of a PACKAGE. Besides COMPONENTS,
FUNCTIONS, and PROCEDURES, it can also contain TYPE and CONSTANT
definitions, among others. Its syntax is presented below.

PACKAGE package name IS
(declarations)
END package name;

[PACKAGE BODY package name IS
(FUNCTION and PROCEDURE descriptions)
END package name;]

As can be seen, the syntax iIs composed of two parts: PACKAGE and
PACKAGE BODY

PACKAGE

The first part (PACKAGE) i1s mandatory and contains all declarations, while
the second part (PACKAGE BODY) Is necessary only when one or more
subprograms (FUNCTION or PROCEDURE) are declared in the first upper

part, In which case It must contain the descriptions (bodies) of the
subprograms.

PACKAGE and PACKAGE BODY must have the same name.

The declarations list can contain the following: COMPONENT, FUNCTION,
PROCEDURE, TYPE, CONSTANT, etc.

PACKAGE

Example 10.1: Simple Package

The example below shows a PACKAGE called my_package. It contains only TYPE
and CONSTANT declarations, so a PACKAGE BODY is not necessary.

LIBRARY ieee;
USE ieee.std logic 1164.all;

= W

PACKAGE my package IS

TYPE state IS (stl, st2, st3, st4);

TYPE color IS (red, green, blue);

CONSTANT vec: STD LOGIC VECTOR(7 DOWNTO 0O0) := "11111111";
END my package;

= WO 00 4 O O

PACKAGE

The next example (example 10.2) contains, besides TYPE and CONSTANT
declarations, a FUNCTION. Therefore, a PACKAGE BODY is now needed
(details on how to write a FUNCTION will be seen in lecture 12). This
function returns TRUE when a positive edge occurs on clk.

=

0 4 o W

g |
12
13
14
15
16
17

PACKAGE

LIBRARY ieee;
USE ieee.std logic 1164.all;
PACKAGE my package IS
TYPE state IS (stl, st2, st3, st4i);
TYPE color IS (red, green, blue);
CONSTANT vec: STD LOGIC VECTOR(7 DOWNTO 0) := "11111111";
FUNCTION positive_edge(SIGNAL s: STD LOGIC) RETURN BOOLEAN;

END my package;

PACKAGE BODY my package IS
FUNCTION positive_edge(SIGNAL s: STD LOGIC) RETURN BOOLEAN IS
BEGIN
RETURN (s'EVENT AND s='1");
END positive edge;
END my package;

PACKAGE

Any of the PACKAGES above (example 10.1 or example 10.2) can now be

compiled, becoming then part of our work LIBRARY (or any other). To make use
of it In a VHDL code, we have to add a new USE clause to the main code (USE
work.my package.all), as shown below.

LIBRARY ieee;
USE ieee.std logic 11l64.all;
USE work.my package.all;

ENTITY...

ARCHITECTURE...

COMPONENT

A COMPONENT is simply a piece of conventional code (that is, LIBRARY
declarations + ENTITY + ARCHITECTURE, as seen in previous lectures).

However, by declaring such code as being a COMPONENT, it can then be
used within another circuit, thus allowing the construction of hierarchical

designs.

A COMPONENT 1s also another way of partitioning a code and providing
code sharing and code reuse.

COMPONENT

To use (instantiate) a COMPONENT, it must first be declared. The
corresponding syntaxes are shown below.

COMPONENT declaration:

COMPONENT component name IS
PORT (
port name : signal mode signal type;
port name : signal mode signal type;
cse)?
END COMPONENT;

COMPONENT instantiation:

label: component name PORT MAP (port list);

COMPONENT

————— COMPONENT declaration: —-—————————-
COMPONENT inverter IS

PORT (a: IN STD LOGIC; b: OUT STD LOGIC);
END COMPONENT;

————— COMPONENT instantiation: —-—=———————--
Ul: inverter PORT MAP (X, V);

COMPONENT

LTBRARY

COMPONENT
Inverter

—10— |\

Main code

COMPONENT
Nand_2

Component
—) ////)' Instantiations

COMPONENT
Nand_3 ///

=D

Figure 10.2 a. : Declarations in the main code itself

Component
Declarations

COMPONENT

LTBRARY

COMPONENT
Inverter

—>0—

COMPONENT
Nand_2 Component Component

_} — Declarations |—1+—P» Instantiations

Malin code

PACKAGE

COMPONENT
Nand_3

=D

Figure 10.2 b. : Declarations in a PACKAGE

COMPONENT
a
o— x
b

—l

Figure 10.3
Circuit of example 10.3.

Components Declared in the Main Code

1 ————— File inverter.vhd: —--——————c—mmmmmm l ———— File nand 3.vhd: ---c-cccccmcmccccceeeee
LIBRARY ieee; 2 LIBRARY ieee;
USE ieee.std logic 1164.all; 3 USE ieee.std logic 1164.all;

B B R e R A s i e e B TR RN NES TN D
ENTITY inverter IS 5 ENTITY nand 3 IS

PORT : IN STD LOGIC; b: OUT STD LOGIC);
i - -) PORT (a, b, c: IN STD LOGIC; d: OUT STD LOGIC);

7 END inverter;
8 END nand 3;
9 ARCHITECTURE inverter OF inverter IS 8 eSS SRS
10 BEGIN 9 ARCHITECTURE nand 3 OF nand 3 IS
11 b <= NOT a; 10 BEGIN
18 e e e e e e e e e e e 12 END nand 3;
; 13 e

1l - File nand"2ovhd: ----------—-—————e—--

LIBRARY ieee; 1 ———— File project.vhd: —————-mmmmmm

USE ieee.std logic 1164.all; 2 LIBRARY ieee:

p— S ’
- T e 3 USE ieee.std logic 1164.all;
5 ENTITY nand 2 IS 4 = Es
PORT (a, b: IN STD LOGIC; c: OUT STD LOGIC); ’
g o2 5 ENTITY project IS

END nand 2;
8 e 6 PORT (a, b, ¢, d: IN STD_LOGIC;
9 ARCHITECTURE nand 2 OF nand 2 IS ? Xy ¥2 QUTRTR LOGIE)]
10 BEGIN 8 END project;
11 c <= NOT (a AND b); i e S G S

12 END nand 2;
13 m—rrrr e

Components Declared in the Main Code

10 ARCHITECTURE structural OF project IS

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

COMPONENT inverter IS
PORT (a: IN STD LOGIC; b: 0OUT STD LOGIC);
END COMPONENT;
COMPONENT nand 2 IS
PORT (a, b: IN STD LOGIC; c: OUT STD LOGIC);
END COMPONENT;
COMPONENT nand 3 IS
PORT (a, b, c: IN STD LOGIC; d: OUT STD LOGIC);
END COMPONENT;
SIGNAL w: STD LOGIC;
BEGIN
Ul: inverter PORT MAP (b, w);
U2: nand 2 PORT MAP (a, b, Xx);
U3: nand 3 PORT MAP (w, ¢, d, ¥Y);
END structural;

Components Declared in a Package

l ———— File inverter-Vhd= ——————————— T oo s File nand 3.vhd: ————ccmmmme e
2 LIBRARY ieee; 2 LIBRARY ieee;
3 USE ieee.std_logic_1164.all; 3 USE ieee.std logic 1164.all;
4 e 4§ e ——————
o EORT G TN XD TOGICH Dz QUL 81D TOGICH: PORT (a, b, c: IN STD LOGIC; d: OUT STD LOGIC);
7 END inverter; 7 END nand 3;:
8 e g -
9 ARCHITECTURE inverter OF inverter IS
9 ARCHITECTURE nand 3 OF nand 3 IS
10 BEGIN 10 oo -
i i b <= NOT a; PRI
12 END inverter: 11 d <= NOT (a AND b AND c);
12 END nand 3;
T im0 =
B i e e e e e e e
i File nand 2.vhd: --------c-cemceececea-
2 LIBRARY ieee;
3 USE ieee.std logic_1164.all;
o mma mae wlv b e mes) D0 ian isse

5 ENTITY nand_2 IS
PORT (a, b: IN STD_LOGIC; c: OUT STD_LOGIC);

END nand_2;
D e S
9 ARCHITECTURE nand_2 OF nand_2 IS
10 BEGIN
Tl c <= NOT (a AND b);

12 END nand 2;

Components Declared in a Package

————— File project.vhd: - - ————————-.

1 - File my components.vhd: --------—-————--

2 LIBRARY ieee;
3 USE ieee.std logic_1164.all;

5 PACKAGE my components IS

6 W ———— inverter: -------

7 COMPONENT inverter IS

8 PORT (a: IN STD_ LOGIC; b: OUT STD LOGIC);

9 END COMPONENT;

10 —————- 2-input nand: ---

1 ljg COMPONENT nand 2 IS

12 PORT (a, b: IN STD_LOGIC; c: OUT STD_LOGIC);
13 END COMPONENT;

14 —————- 3-input nand: ---

15 COMPONENT nand_3 IS

16 PORT (a, b, c: IN STD LOGIC; d: OUT STD LOGIC);
17 END COMPONENT;

188 @ - -

19 END my components;

D0 R S

(92

0 g O

11
b2
13
14
15
16
1 %

LIBRARY ieee;
USE ieee.std logic 1164.all;

USE work.my components.all;

ENTITY project IS
PORT (a, b, ¢, d: IN STD LOGIC;
X, y: OUT STD LOGIC);
END project;

ARCHITECTURE structural OF project IS
SIGNAL w: STD LOGIC;
BEGIN
Ul: inverter PORT MAP (b, w);
U2: nand 2 PORT MAP (a, b, Xx);
U3: nand 3 PORT MAP (w, c, d, Y);
END structural;

The assignments will be attached to your class room.

End of lecture 10
Any Questions ?

