Integrated Circuits Design by
FPGA

Cpuall e Lga daaf aa

Ciad [Apwaigl) dSE) A IS f AR Jac) < AN daala

L_ecture 11

Packages and Components

Arithmetic Logic Unit (ALU)

Objectives of this Lecture

» To review Packages and Components

» To Implement ALU example using Components.

Contents of this Lecture

* Introduction (Review)

» PACKAGE (Review)

- COMPONENT (Review)

» ALU Example using COMPONENTS

Introduction

Figure 10.1
Fundamental units of VHDL code.

Main code LIBRARY
PACKAGE
Library 5
declarations ’ COMPONENT
FUNCTION
ENTITY PROCEDURE
ARCHITECTURE

Introduction

Packages

Lecture 10 & 11
Components

Functions
Lecture 12 & 13

Procedures

Introduction

These new units can be located in the main code itself (that is, on the left-
hand side of figure 10.1)

However, since their main purpose Is to allow common pieces of code to be
reused and shared, it iIs more usual to place them in a LIBRARY.

This also leads to code partitioning, which is helpful when dealing with long
codes.

In summary, frequently used pieces of code can be written In the form of
COMPONENTS, FUNCTIONS, or PROCEDURES, then placed In a
PACKAGE, which is finally compiled into the destination LIBRARY.

We have already seen that at least two LIBRARIES are generally needed In a
design: ieee, and work.

After studying lectures 10 to 13, we will be able to construct our own
libraries, which can then be added to the list above.

Introduction

For example, commonly used circuits, like flip-flops, multiplexers, adders,
logic gates, etc., can be placed in a LIBRARY, so any project can make use of
them without having to explicitly rewrite such codes.

a(0) —
LIBRARY lecee;
USE ieee.std logic 1164.all; b(0) —

_END and?2;
__ a(2) —
9 ARCHITECTURE and2 OF and2 IS X(2)
10 =BEGIN b(2) —
11 TX <= a and b;

12 END and2: a(3)

4 SENTITY and2 IS a(l) —
5 ZPORT (a, b: IN std logic vector (3 downto 0); X(1)
6 }X: OUT std logic vector (3 downto 0)); b(1) —

PACKAGE

We start by describing the structure of a PACKAGE. Besides COMPONENTS,
FUNCTIONS, and PROCEDURES, it can also contain TYPE and CONSTANT
definitions, among others. Its syntax is presented below.

PACKAGE package name IS
(declarations)
END package name;

[PACKAGE BODY package name IS
(FUNCTION and PROCEDURE descriptions)
END package name;]

As can be seen, the syntax Is composed of two parts: PACKAGE and
PACKAGE BODY

PACKAGE

The first part (PACKAGE) i1s mandatory and contains all declarations, while
the second part (PACKAGE BODY) Is necessary only when one or more
subprograms (FUNCTION or PROCEDURE) are declared in the first upper

part, In which case It must contain the descriptions (bodies) of the
subprograms.

PACKAGE and PACKAGE BODY must have the same name.

The declarations list can contain the following: COMPONENT, FUNCTION,
PROCEDURE, TYPE, CONSTANT, etc.

PACKAGE

Example 10.1: Simple Package

The example below shows a PACKAGE called my_package. It contains only TYPE
and CONSTANT declarations, so a PACKAGE BODY is not necessary.

LIBRARY ieee;
USE ieee.std logic 1164.all;

= W

PACKAGE my package IS

TYPE state IS (stl, st2, st3, st4);

TYPE color IS (red, green, blue);

CONSTANT vec: STD LOGIC VECTOR(7 DOWNTO 0O0) := "11111111";
END my package;

= WO 00 4 O O

PACKAGE

The next example (example 10.2) contains, besides TYPE and CONSTANT
declarations, a FUNCTION. Therefore, a PACKAGE BODY is now needed
(details on how to write a FUNCTION will be seen in lecture 12). This
function returns TRUE when a positive edge occurs on clk.

web
Highlight

=

0 4 o W

g |
12
13
14
15
16
17

PACKAGE

LIBRARY ieee;
USE ieee.std logic 1164.all;
PACKAGE my package IS
TYPE state IS (stl, st2, st3, st4i);
TYPE color IS (red, green, blue);
CONSTANT vec: STD LOGIC VECTOR(7 DOWNTO 0) := "11111111";
FUNCTION positive_edge(SIGNAL s: STD LOGIC) RETURN BOOLEAN;

END my package;

PACKAGE BODY my package IS
FUNCTION positive_edge(SIGNAL s: STD LOGIC) RETURN BOOLEAN IS
BEGIN
RETURN (s'EVENT AND s='1");
END positive edge;
END my package;

PACKAGE

Any of the PACKAGES above (example 10.1 or example 10.2) can now be

compiled, becoming then part of our work LIBRARY (or any other). To make use
of it In a VHDL code, we have to add a new USE clause to the main code (USE
work.my package.all), as shown below.

LIBRARY ieee;
USE ieee.std logic 11l64.all;
USE work.my package.all;

ENTITY...

ARCHITECTURE...

COMPONENT

A COMPONENT is simply a piece of conventional code (that is, LIBRARY
declarations + ENTITY + ARCHITECTURE, as seen in previous lectures).

However, by declaring such code as being a COMPONENT, it can then be
used within another circuit, thus allowing the construction of hierarchical

designs.

A COMPONENT 1is also another way of partitioning a code and providing
code sharing and code reuse.

COMPONENT

To use (instantiate) a COMPONENT, it must first be declared. The
corresponding syntaxes are shown below.

COMPONENT declaration:

COMPONENT component name IS
PORT (
port name : signal mode signal type;
port name : signal mode signal type;
cse)?
END COMPONENT;

COMPONENT instantiation:

label: component name PORT MAP (port list);

COMPONENT

————— COMPONENT declaration: —-—————————-
COMPONENT inverter IS

PORT (a: IN STD LOGIC; b: OUT STD LOGIC);
END COMPONENT;

————— COMPONENT instantiation: —-—=———————--
Ul: inverter PORT MAP (X, V);

COMPONENT

LTBRARY

COMPONENT
Inverter

—10— |\

Main code

COMPONENT
Nand_2

Component
—) ////)' Instantiations

COMPONENT
Nand_3 ///

=D

Figure 10.2 a. : Declarations in the main code itself

Component
Declarations

COMPONENT

LTBRARY

COMPONENT
Inverter

—>0—

COMPONENT
Nand_2 Component Component

_} — Declarations |—1+—P» Instantiations

Malin code

PACKAGE

COMPONENT
Nand_3

=D

Figure 10.2 b. : Declarations in a PACKAGE

ALU Example using COMPONENTS

a (7:0)

-
b (7:0) .

Unit ‘
Mux y (7:0)
I —

Arithmetic
; Unit sel (3)
Ciln

sel (3:0) —I—l

:

ALU Example using COMPONENTS

sel Operation Function Unit
0000 y<=a Transfer a
0001 y <= a+l Increment a
0010 y <= a-1 Decrement a
0011 y<=b Transfer b Arithmetic
0100 y <= b+l Increment b
0101 y <= b-1 Decrement b
0110 y <= a+b Addaandb
OI11 y <= a+b+cin Add a and b with carry
1000 y <=NOT a Complement a
1001 y<=NOTDb Complement b
1010 | y<=aANDD AND
1011 y<=aORb OR Logic
1100 [y<=aNANDD NAND
1101 | y<=aNORD NOR
1110 | y<=aXORb XOR
1111 [y<=a XNOR D XNOR

(O BN~ V)

0 N O

13
12
13
14
15
16
17
18
19
20
21
22

ALU)y Jid & il 1l

LIBRARY ieee;

USE ieee.std logic 1164.all;

USE ieee.std logic _unsigned.all;

ENTITY ALU IS

PORT (a, b: IN STD LOGIC VECTOR (7 DOWNTO 0);

sel: IN STD LOGIC _VECTOR (3 DOWNTO 0);
cin: IN STD LOGIC;
y: OUT STD LOGIC VECTOR (7 DOWNTO 0));

ARCHITECTURE dataflow OF ALU IS
SIGNAL arith, logic: STD _LOGIC_VECTOR (7 DOWNTO 0);
BEGIN
————— Arithmetic unit: ------
WITH sel(2 DOWNTO 0) SELECT
arith <= a WHEN "000",
a+l WHEN "001",
a-1 WHEN "010",
b WHEN "011",
b+1 WHEN "100",

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

b-1 WHEN "101",
at+tb WHEN "110",
a+b+cin WHEN OTHERS;
----- Logic unit: —-—-—————e—e—--
WITH sel(2 DOWNTO 0) SELECT
logic <= NOT a WHEN "000",
NOT b WHEN "001",
a AND b WHEN "010",
OR b WHEN "011",
NAND b WHEN "100",
a NOR b WHEN "101",
a XOR b WHEN "110",
NOT (a XOR b) WHEN OTHERS;

L o

WITH sel(3) SELECT
y <= arith WHEN '0',
logic WHEN OTHERS;

40 END dataflow;

41

ALU Example using COMPONENTS

l e COMPONENT arith unit: ----ceccccccccaa—--
LIBRARY ieee;
USE ieee.std logic 1164.all;

4 USE ieee.std logic unsigned.all;
e et o o e Al

6 ENTITY arith_unit IS

7 PORT (a, b: IN STD LOGIC VECTOR (7 DOWNTO 0);
8 sel: IN STD LOGIC VECTOR (2 DOWNTO 0);
9 cin: IN STD_LOGIC;

10 x: OUT STD LOGIC_VECTOR (7 DOWNTO 0));
11 END arith unit;

12 -

13 ARCHITECTURE arith unit OF arith unit IS

14 SIGNAL arith, logic: STD LOGIC_VECTOR (7 DOWNTO O0);
15 BEGIN

16 WITH sel SELECT

56 X <= a WHEN "000",

18 a+l WHEN "001",

19 a-1 WHEN "010",

20 b WHEN "011",

21 b+1 WHEN "100",

22 b-1 WHEN "101",

23 a+b WHEN "110",

24 a+b+cin WHEN OTHERS;

25 END arith unit;

= W

0 4 o

9

10
.
12
13
14
15
16
17
18
19
20
21
22
23

———————— COMPONENT logic unit: —------cccceccaaaa-.
LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY logic unit IS
PORT (a, b: IN STD LOGIC_VECTOR (7 DOWNTO O0);
sel: IN STD LOGIC VECTOR (2 DOWNTO 0);
x: OUT STD_LOGIC_VECTOR (7 DOWNTO 0));
END logic_unit;

ARCHITECTURE logic unit OF logic unit IS
BEGIN
WITH sel SELECT

X <= NOT a WHEN "000",

NOT b WHEN "001",
AND b WHEN "010",
OR b WHEN "011",
NAND b WHEN "100",
NOR b WHEN "101",
XOR b WHEN "110",

NOT (a XOR b) WHEN OTHERS;

END logic unit;

(SR N O B

ALU Example using COMPONENTS

= W

00 4 O U

11
12
13
14
15
16

-------- COMPONENT mMUX: —==————— e e e =
LIBRARY ieee;
USE ieee.std logic 1l164.all;
ENTITY mux IS
PORT (a, b: IN STD LOGIC VECTOR (7 DOWNTO O0);
sel: IN STD LOGIC;
x: OUT STD LOGIC _VECTOR (7 DOWNTO 0));
END mux;

ARCHITECTURE mux OF mux IS

BEGIN
WITH sel SELECT
X <= a WHEN '0"',
b WHEN OTHERS;
END mux;

ALU Example using COMPONENTS

l ——mm——— Project ALU (main code): —————————ee———
2 LIBRARY ieee; 21 COMPONENT logic_unit IS
3 USE ieee.std logic 1164.all; 22 PORT (a, b: IN STD LOGIC VECTOR(7 DOWNTO 0);
B mEms . s sm s e e, R e 23 sel: IN STD LOGIC_VECTOR(2 DOWNTO 0);
24 X: OUT STD LOGIC VECTOR(7 DOWNTO 0));
5 ENTITY alu IS - -
25 END COMPONENT;
6 PORT (a, b: IN STD LOGIC VECTOR(7 DOWNTO 0); o
7 cin: IN STD LOGIC; 27 COMPONENT mux IS
8 sel: IN STD_LOGIC_VECTOR(3 DOWNTO 0); 28 PORT (a, b: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
9 y: OUT STD LOGIC VECTOR(7 DOWNTO 0)); 29 gels ENISTH EUSTCS
30 x: OUT STD LOGIC VECTOR(7 DOWNTO 0));
10 END alu; 31 END COMPONENT;
DT i o 5 1
12 ARCHITECTURE alu OF alu IS 33 SIGNAL x1, x2: STD LOGIC_VECTOR(7 DOWNTO 0);
13 o 34 cmmmmmmm e
: _ 35 BEGIN
14 COMPONENT arith unit IS)))
— 36 Ul: arith unit PORT MAP (a, b, cin, sel(2 DOWNTO 0), x1);
15 PORT (a, b: IN STD_LOGIC_VECTOR(7 DOWNTO 0); 37 U2: logic unit PORT MAP (a, b, sel(2 DOWNTO 0), x2);
16 cin: IN STD LOGIC; 38 U3: mux PORT MAP (x1, x2, sel(3), v);
17 sel: IN STD_LOGIC_VECTOR(2 DOWNTO 0); 39 END alu;
18 x: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
19 END COMPONENT;

¢ R TR —

2000ns 300.0ns

ALU Example using COMPONENTS

ADU.IDns

= Cin

sel

- 2
- b
-

Figure 10.8
Simulation results of example 10.6.

‘lllll

i\

—— e —————

AV

lll
N\

= \
A £ A
Yoea Yoy 223 §

5000ns B000ns 7000ns 600.0ns 900.0ns

B)
¥ 29 Yourdo

! N
D €3 8K

The assignments will be attached to your class room.

End of lecture 11
Any Questions ?

