Integrated Circuits Design by
FPGA

Cpuall e Lga daaf aa

Ciad [Apwaigl) dSE) A IS f AR Jac) < AN daala

L_ecture 12

Functions

Objectives of this Lecture

* To define Functions

» To Implement Functions in examples design.

Contents of this Lecture

* Introduction
* Function

* Function Location

Introduction

Functions and Procedures are collectively called subprograms.

From a construction point of view, they are very similar to a PROCESS. For
they are the only pieces of sequential VHDL code, and thus employ the same
sequential statements seen there (IF, CASE, and LOOP; WAIT Is not
allowed).

However, from the applications point of view, there is a fundamental
difference between a PROCESS and a FUNCTION or PROCEDURE.
While the first Is intended for immediate use in the main code, the others are
Intended mainly for LIBRARY allocation, that is, their purpose is to store
commonly used pieces of code, so they can be reused or shared by other
projects.

A FUNCTION is a section of sequential code. Its purpose Is to create new
functions to deal with commonly encountered problems, like data type
conversions, logical operations, arithmetic computations, and new operators
and attributes.

By writing such code as a FUNCTION, it can be shared and reused, also
partitioning the main code to be shorter and easier to understand.

As already mentioned, a FUNCTION is very similar to a PROCESS. The
same statements that can be used in a process (IF, WAIT, CASE, and LOOP)
can also be used in a function, with the exception of WAIT.

The other two prohibitions in a Function are SIGNAL declarations and
COMPONENT instantiations.

To construct and use a Function, two parts are necessary: the function itself
(function body) and a call to the function. Their syntaxes are shown below.

Function Body

FUNCTION function name [<parameter list>] RETURN data type IS
[declarations]

BEGIN
(sequential statements)

END function name;

In the syntax above, {(parameter list) specifies the function’s input parameters,
that is:

{parameter list) = [CONSTANT] constant_name: constant_type; or

{parameter list) = SIGNAL signal _name: signal_type;

There can be any number of such parameters (even zero), which, as shown

above, can only be CONSTANT (default) or SIGNAL (VARIABLES are not
allowed).

Their types can be any of the synthesizable data types studied In chapter 3
(BOOLEAN, STD LOGIC, INTEGER, etc.). However, no range
specification should be Included (for example, do not enter RANGE when
using INTEGER, or TO/DOWNTO when using STD_LOGIC _VECTOR).

On the other hand, there is only one return value, whose type is specified by
data_type.

FUNCTION f1 (a, b: INTEGER; SIGNAL c: STD LOGIC VECTOR)

RETURN BOOLEAN IS

BEGIN Function
Body

(sequential statements)
END f1;

web
Highlight

Function Call:

A function is called as part of an expression. The expression can obviously
appear by Itself or associated to a statement (either concurrent or sequential).

Examples of function calls:

X <= conv_integer(a);
y <= maximum(a, b);

IF X > maximum(a, b)

Example 11.1: Function positive edge():

—————— Function body: -
FUNCTION positive_edge(SIGNAL s: STD LOGIC) RETURN BOOLEAN IS
BEGIN

RETURN (s'EVENT AND s='1");
END positive edge;

------ Function call: -

IF positive edge(clk) THEN...

Function Location

PACKAGE ——> LIBRARY

(+ PACKAGE BODY)
FUNCTION /
PROCEDURE ARCHITECTURE
location (declarative part)
Main code

ENTITY

Figure 11.1
Typical locations of a FUNCTION or PROCEDURE.

Function Location
Example 11.3: FUNCTION Located in the Main Code

1 __--_-_-T ____________________________________ 12 FUNCTION positive_edge(SIGNAL s: STD LOGIC)
= LIBRéRY S 13 RETURN BOOLEAN IS
3 USE ieee.std logic 1164.all; 14 BEGIN
B i e S e e e
15 RETURN s'EVENT AND s='1";
5 ENTITY dff IS i 2
16 END positive edge;
6 PORT (d; clk; rat: 1IN STD_LOGIC; 17 -
7 g: OUT STD LOGIC);
— 18 BEGIN
8 END dff;
] 19 PROCESS (clk, rst)
20 BEGIN
10 ARCHITECTURE my arch OF dff IS
11 - 21 IF (rst='1') THEN g <= '0';
22 ELSIF positive edge(clk) THEN q <= d;
23 END IF;
24 END PROCESS;

25 END my arch;
26 = ————

8
9
10
11

12
13
14
15
16

Function Location

Example 11.4: FUNCTION Located in a Package

------- Package: —-———————mm
LIBRARY ieee;
USE ieee.std logic_1164.all;

PACKAGE my package IS
FUNCTION positive edge(SIGNAL s: STD LOGIC) RETURN BOOLEAN;
END my package;

PACKAGE BODY my package IS
FUNCTION positive edge(SIGNAL s: STD LOGIC)
RETURN BOOLEAN IS

BEGIN
RETURN s'EVENT AND s='1l"';
END positive edge;
END my package;

w

0 g O

9

10
11
12
13
14
15
16
17
18
19
20

—————— Main code: ———————mmmm
LIBRARY ieee;
USE ieee.std logic 1164.all;
USE work.my package.all;
ENTITY dff IS
PORT (d, clk, rst: IN STD LOGIC;
g: OUT STD_LOGIC);

ARCHITECTURE my arch OF dff IS
BEGIN
PROCESS (clk, rst)
BEGIN
IF (rst='1') THEN q <= '0';
ELSIF positive edge(clk) THEN g <= d;
END IF;
END PROCESS;
END my arch;

Function Location
Example 11.5: FUNCTION Located in a Package : conv_integer()

l] ——mcceee- Package: ---—==-emecccc e c e 10 PACKAGE BODY my package IS
2 LIBRARY ieee; 1 FUNCTION conv_integer (SIGNAL vector: STD_LOGIC_VECTOR)
3 USE ieee.std logic 1164.all; e e e T
o = 1:3 VARIABLE result: INTEGER RANGE 0 TO 2**vector'LENGTH-1;
vt i R A T R R B e 14 BEGIN
5 PACKAGE my package IS 15 IF (vector(vector'HIGH)='1l') THEN result:=1;
6 FUNCTION conv_integer (SIGNAL vector: STD_LOGIC_VECTOR) 16 ELSE result:=0;
7 RETURN INTEGER; 17 END IF;
8 END my_package; 18 FOR i IN (vector'HIGH-1) DOWNTO (vector'LOW) LOOP
9 e 19 result:=result*2;
20 IF(vector(i)='1"') THEN result:=result+l;
21 END IF;
22 END LOOP;
23 RETURN result;
24 END conv_integer;

25 END my_package;
26 ———— e e

Function Location

Example 11.5: FUNCTION Located in a Package : conv_integer()

l - Main code: =—=mmmmmm e ————
2 LIBRARY ieee;

3 USE ieee.std logic 1164.all;

4 USE work.my package.all;

B e e o e st s e o S s B M

6 ENTITY conv_int2 IS

7 PORT (a: IN STD_LOGIC_VECTOR(O0 TO Xy

8 y: OUT INTEGER RANGE 0 TO 15);

9 END conv_int2;

10 mm
11 ARCHITECTURE my arch OF conv_int2 IS

12 BEGIN

13 y <= conv_integer(a);

14 END my arch;

Function Location

Example 11.6: FUNCTION Located in a Package : Overloaded “+” Operator

l ————— Package: -—-—-———————
2 LIBRARY ieee;
USE ieee.std logic 1164.all;

w

5 PACKAGE my package IS

6 FUNCTION "+" (a, b: STD LOGIC_VECTOR)
7 RETURN STD LOGIC_ VECTOR;

8 END my package;

=
10 PACKAGE BODY my package IS

11 FUNCTION "+" (a, b: STD LOGIC_ VECTOR)

12 RETURN STD_LOGIC_VECTOR IS

13 VARIABLE result: STD_LOGIC_VECTOR;

14 VARIABLE carry: STD LOGIC;

15 BEGIN

16 carry := '0';

17 FOR i IN a'REVERSE RANGE LOOP

18 result(i) := a(i) XOR b(i) XOR carry;

19 carry := (a(i) AND b(i)) OR (a(i) AND carry) OR
20 (b(i) AND carry);

21 END LOOP;

22 RETURN result;

23 END "+";

24 END my package;

U

0 N O

11
12
13
14
15
16

————————— Main code: —————————mmmmm
LIBRARY ieee;
USE ieee.std logic_1164.all;
USE work.my package.all;
ENTITY add bit IS
PORT (a: IN STD LOGIC VECTOR(3 DOWNTO 0);
y: OUT STD LOGIC VECTOR(3 DOWNTO 0));
END add bit;
ARCHITECTURE my_ arch OF add_bit IS
CONSTANT b: STD_LOGIC_VECTOR(3 DOWNTO 0) := "0011";
CONSTANT c: STD LOGIC_VECTOR(3 DOWNTO 0) := "0110";
BEGIN
yE=Ea b tre; -- overloaded "+" operator
END my arch;

Function Location

Example 11.6: FUNCTION Located in a Package : Overloaded “+” Operator

50.an5 100.an3 150.an3 2DD.IEIns 250.‘Dns BOD.IDns BSD.IEInS JDD.an
a | DO B f % % 2 ¥ 8 x # & YT B 1}

Sy | D9 9 X 1w X 1 ¥ 12 ¥ 13 X 14 ¥ 15 W o0

(AT8) 1 iy f

=~

Figure 11.2
Simulation results of example 11.6.

The assignments will be attached to your class room.
Problem 11.2

End of lecture 12
Any Questions ?

