Integrated Circuits Design by
FPGA

Cpuall e Lga daaf aa

Ciad [Apwaigl) dSE) A IS f AR Jac) < AN daala

L_ecture 13

Procedure

Objectives of this Lecture

* To define Procedure

» To Implement Procedure in examples design.

Contents of this Lecture

* Introduction

* Procedure

* Procedure Location

* FUNCTION versus PROCEDURE Summary

Introduction

Functions and Procedures are collectively called subprograms.

From a construction point of view, they are very similar to a PROCESS. For
they are the only pieces of sequential VHDL code, and thus employ the same
sequential statements seen there (IF, CASE, and LOOP; WAIT Is not
allowed).

However, from the applications point of view, there is a fundamental
difference between a PROCESS and a FUNCTION or PROCEDURE.
While the first Is intended for immediate use in the main code, the others are
Intended mainly for LIBRARY allocation, that is, their purpose is to store
commonly used pieces of code, so they can be reused or shared by other
projects.

Procedure

A PROCEDURE is very similar to a FUNCTION and has the same basic purposes.
However, a procedure can return more than one value.

Like a FUNCTION, two parts are necessary to construct and use a PROCEDURE: the
procedure itself (procedure body) and a procedure call.

Procedure Body

PROCEDURE procedure name [<parameter list>] IS
[declarations]

BEGIN
(sequential statements)

END procedure_ name;

In the syntax above, <parameter 1ist> specifies the procedure’s input and output
parameters; that is:

{parameter list) = [CONSTANT] constant_name: mode type;
{parameter list) = SIGNAL signal_name: mode type; or

{parameter list) = VARIABLE variable_name: mode type;

web
Highlight

Procedure

A PROCEDURE can have any number of IN, OUT, or INOUT parameters, which can be
SIGNALS, VARIABLES, or CONSTANTS.

For input signals (mode IN), the default is CONSTANT, whereas for output signals (mode
OUT or INOUT) the default is VARIABLE.

As seen before, WAIT, SIGNAL declarations, and COMPONENTS are not synthesizable
when used in a FUNCTION. The same Is true for a PROCEDURE, the exception that a
SIGNAL can be declared, but then the PROCEDURE must be declared in a PROCESS.

PROCEDURE my procedure (a: IN BIT; SIGNAL b, c: IN BIT;
SIGNAL x: OUT BIT VECTOR(7 DOWNTO 0);
SIGNAL y: INOUT INTEGER RANGE 0 TO 99) IS
BEGIN

END my procedure;

Procedure

Procedure Call

Contrary to a FUNCTION, which i1s called as part of an expression, a PROCE-
DURE call 1s a statement on its own. It can appear by itself or associated to a
statement (either concurrent or sequential).

Examples of procedure calls:

compute min max(inl, in2, 1n3, outl, out2);

-- statement by itself

divide(dividend, divisor, quotient, remainder);

-- statement by itself

IF (a>b) THEN compute min max(inl, in2, 1n3, outl, out2);

-- procedure call associated to another statement

Procedure Location

PACKAGE ——> LIBRARY

(+ PACKAGE BODY)
FUNCTION /
PROCEDURE ARCHITECTURE
location (declarative part)
Main code

ENTITY

Figure 11.1
Typical locations of a FUNCTION or PROCEDURE.

Procedure Location

inpl = p MIN_out

min_max

1np2 —> —’ maX_OUt

CIld

Figure 11.5
min_max circuit of example 11.9.

Procedure

Example 11.9: PROCEDURE Located in the Main Code

__ 14 PROCEDURE sort (SIGNAL inl, in2: IN INTEGER RANGE 0 TO limit;
. 15 SIGNAL min, max: OUT INTEGER RANGE 0 TO limit) IS
2 LIBRARY leee; 16 -
3 USE ieee.std logic 1164.all; 17 IF (inl > in2) THEN
B e e s i 18 max <= inl;
5 ENTITY min max IS g HELHL "= pedss
= 20 ELSE
6 GENERIC (limit : INTEGER := 255); i
21 max <= 1in2;
7 PORT (ena: IN BIT; 22 min <= inl;
8 inpl, inp2: IN INTEGER RANGE 0 TO limit; 23 END IF;
9 min out, max out: OUT INTEGER RANGE 0 TO limit); 24 END sort;
10 END min_max; e
T —— 26 BEGIN
27 PROCESS (ena)
28 BEGIN
29 IF (ena='l') THEN sort (inpl, inp2, min_out, max_out);
30 END IF;
31 END PROCESS;

32 END my architecture;

Procedure

Example 11.10: PROCEDURE Located in a Package

l e Package:

LIBRARY ieee;

USE ieee.std logic 1164.all;

'S8

0 4 o O

9 END my package;

PACKAGE my package IS
CONSTANT limit: INTEGER := 255;
PROCEDURE sort (SIGNAL inl, in2:
SIGNAL min, max: OUT INTEGER

IN INTEGER RANGE 0 TO limit;
RANGE 0 TO limit);

IN INTEGER RANGE 0 TO limit;
RANGE 0 TO limit) IS

I e —————
11 PACKAGE BODY my package IS

12 PROCEDURE sort (SIGNAL inl, in2:
13 SIGNAL min, max: OUT INTEGER
14 BEGIN

15 ~ IF (inl > in2) THEN

16 max <= inl;

17 min <= in2;

18 ELSE

19 max <= in2;

20 min <= inl;

21 END IF;

22 END sort;

23 END my package;

wm

0 ~J O

Lk
12
13
14
15
16
17
18
19
20

--------- Main code: —-———————mm
LIBRARY ieee;
USE ieee.std logic 1164.all;
USE work.my package.all;
ENTITY min max IS
GENERIC (limit: INTEGER := 255);
PORT (ena: IN BIT;
inpl, inp2: IN INTEGER RANGE 0 TO limit;
min out, max out: OUT INTEGER RANGE 0 TO limit);
END min max;
ARCHITECTURE my architecture OF min max IS
BEGIN
PROCESS (ena)
BEGIN
IF (ena='l') THEN sort (inpl, inp2, min out, max out);
END IF;
END PROCESS;

END my architecture;

web
Pencil

Procedure

Example 11.10: PROCEDURE Located in a Package

1DU.ans 2DU.1I]n5 BDU.ana leIII.IEIna EDD.IUns EDI].]Uns

?UIII.IDns EFUD.IDHS SDD.IEH

= inp
= inp2
= ena
S min_out
S mayx_out

Figure 11.6

DO
D120

DO
DO

"

Ly

b

/

0 % 2 ¥ 4 f 80 f 8 f 100)
120§ 10 ¥ s X s f 40 § 20 ¥
k20 f 40 F B0 F 40§ 20
Pooo120 f 100 § 80 I B0 f 80 § 100

Simulation results of example 11.9.

v

FUNCTION versus PROCEDURE Summary

A FUNCTION has zero or more input parameters and a single return value. The input
parameters can only be CONSTANTS (default) or SIGNALS (VARIABLES are not

allowed).

A PROCEDURE can have any number of IN, OUT, and INOUT parameters, which can be
SIGNALS, VARIABLES, or CONSTANTS. For input parameters (mode IN) the default is
CONSTANT, whereas for output parameters (mode OUT or INOUT) the default is

VARIABLE.

A FUNCTION is called as part of an expression, while a PROCEDURE is a statement on
Its own.

In both, WAIT and COMPONENTS are not synthesizable.

The possible locations of FUNCTIONS and PROCEDURES are the same (figure 11.1).
Though they are usually placed in PACKAGES (for code partitioning, code sharing, and
code reuse purposes), they can also be located in the main code.

The assignments will be attached to your class room.
Problem 11.7: Statistical Procedure

End of lecture 13
Any Questions ?

