Integrated Circuits Design by
FPGA

Gl e Bga daaf aa

ciad [dpwdigl) ARt A0S / AR Ja oY) <l 8l Aaaly

L_ecture 15

System Design

Digital Filters

Objectives of this Lecture

* To define Digital Filters

» To Implement Digital Filter (FIR) in an example design.

Contents of this Lecture

* Introduction

* FIR filter Example

Introduction

Digital signal processing (DSP) finds innumerable applications in the fields of
audio, video, and communications, among others. Such applications are
generally based on LTI (linear time Invariant) systems, which can be
Implemented with digital circuitry.

Any LTI system be represented by the following equation:

N M
> ayln—k] =) bix[n—k]
k=0 k=0

Where a, and b, are the filter coefficients, and x|[n - k], y[n - K] are the current
(for k = O) and earller (for k > 0) Input and output values, respectively.

To implement this expression, registers are necessary to store x[n- k] and/or y[n
- k] (for k > 0), besides multipliers and adders, which are well-known building
blocks in the digital domain.

Introduction

The impulse response of a digital filter can be divided into two categories: IR
(infinite Impulse response) and FIR (finite impulse response).

The IR corresponds to the general case described by the equation below, while
the FIR occurs when N = 0.

N M
> ayln—kl =) bexn—Kk]
k=0 k=0

Only FIR filters can exhibit linear phase, so they are indispensable when linear
phase Is required, like in many telecom applications. With N = 0, the equation
above becomes:

M
yln] =) _ cix[n — K]
k=0

Introduction

Where ¢, = b,/a, are the coefficients of the FIR filter. This equation can be
Implemented by the system of figure 12.8, where D (delay) represents a register
(flip-flops), a triangle is a multiplier, and a circle means an adder.

x[n] >)— vyl
D ”
o >0
D -
w2 >
D .
. T ™
X[n-3] I{
Figure 12.8

FIR filter diagram (with 4 coefficients).

Introduction

An equivalent RTL representation is shown in figure 12.9. As shown, the values
of x are stored in a shift register, whose outputs are connected to multipliers
and then to adders.

<&
reg(2) reg(1) reg(0)
X
DFF DFF DFF
PN > P
coef(0) X) coef(1) X coef(2) X) coef(3) X
I
Wt \Z t | e [
[
Figure 12.9

RTL representation of a FIR filter.

Introduction

The coefficients must also be stored on chip. However, If the coefficients are
always the same (that is, If it Is a dedicated filter), their values can be
Implemented by means of logic gates rather than registers (we just need to store
CONSTANTYS).

On the other hand, If it is a general purpose filter, then registers are required for
the coefficients. In the architecture of figure 12.9, the output vector (y) was also
stored, in order to provide a clean, synchronous output.

Notice that the lower section of the filter contains a MAC (multiply-
accumulate) pipeline. This circuit 1s closely related to the MAC circuit
discussed In section 12.3. Here too, overflow can happen, so an add/truncate
procedure must be included in the design.

With n = m = 4, the synthesized circuit required 20 flip-flops (four for each
stage of the shift register, plus eight for the output)

(&2 B =

0 ~J O

13
12
13
14
15
16
17
18
19
20
21
22

FIR filter example

LIBRARY ieee;
USE ieee.std logic 1164.all; X
USE ieee.std logic arith.all; -- package needed for SIGNED
ENTITY fir2 IS
GENERIC (n: INTEGER := 4; m: INTEGER := 4);
--n = # of coef., m = # of bits of input and coef.
-- Besides n and m, CONSTANT (line 19) also need adjust
PORT (X: IN SIGNED(m-1 DOWNTO 0);
clk, rst: IN STD LOGIC;
y: OUT SIGNED(2*m-1 DOWNTO 0));
END fir2;

ARCHITECTURE rtl OF fir2 IS

TYPE registers IS ARRAY (n-2 DOWNTO 0) OF
SIGNED(m-1 DOWNTO 0);

TYPE coefficients IS ARRAY (n-1 DOWNTO 0) OF

SIGNED(m-1 DOWNTO 0);
SIGNAL reg: registers := ("0000", "0000™, "0000™);
CONSTANT coef: coefficients := ("0001", "0010", "OO1l1l",
"0100");

DFF

web
Pencil

FIR filter example

23 BEGIN

24 PROCESS ﬂ::), rst) X

25 VARIABLE acc, prod: s
26 SIGNED(2*m-1 DOWNTO 0) := (OTHERS=>'0"');

27 VARIABLE sign: STD LOGIC; amM»—<§> coef(l)
28 BEGIN

29 0 ———— reset: —————mmmmm -

30 IF (rst='1l') THEN

31 FOR i IN n-2 DOWNTO 0 LOOP

32 FOR j IN m-1 DOWNTO 0 LOOP

33 reg(i)(j) <= '0';

34 END LOOP;

35 END LOOP;

36 00 ————— register inference + MAC: —-————-—-

37 ELSIF (clk'EVENT AND clk='1') THEN

38 acc := coef(0)*x;

39 FOR i IN 1 TO n-1 LOOP

40 sign := acc(2*m-1);

41 prod := coef(i)*reg(n-1-1i);

42 acc := acc + prod;

AN ——e LN o —t

web
Pencil

web
Note
coef(1) * reg (2)

coef(2) * reg (1)

coef(3) * reg (0)

43
44
45
46
47
48
49
50
= |
22
93

FIR filter example

———- overflow check: —————ceceeee-o
IF (sign=prod(prod'left)) AND

(acc(acc'left) /= sign)

THEN
acc := (acc'LEFT => sign, OTHERS => NOT sign);
END IF;
END LOOP;
. reg <= X & reg(n-2 DOWNTO 1);
END IF; = Shift Right Process

Y €= acc:
END PROCESS;

54 END rtl;

93

FIR filter example

250.10ns SDD.IDns ?SD.ans 1.Dlus 1.2':5us 1.51us 1.7§us 2.QUS 2‘2f5us 2.§us 2‘?.5U
= rst 1
@-ck | O | i i
D~ DO p x & X A8 X A5 x 4 x 8 & 44 23
@y | DO 0 Y2 f 247 X 244 X 6 & 22) 234

Figure 12.10
Simulation results of FIR filter of figure 12.9.

FIR filter example

Input signal

Output Signal

The assignments will be attached to your class room

End of lecture 15
Any Questions ?

