Integrated Circuits Design by
FPGA

Gl e Bga daaf aa

ciad [dpwdigl) ARt A0S / AR Ja oY) <l 8l Aaaly

L_ecture 16

System Design

Neural Networks

Objectives of this Lecture

* To define Neural Networks

» To Implement Neural Networks in an example design.

Contents of this Lecture

* Introduction

* Neural Networks Example

Introduction

Nodes

Synapses
(weights)

Introduction

Neural Networks (NN) are highly parallel, highly interconnected systems.
Such characteristics make their implementation very challenging, and also very
costly, due to the large amount of hardware required.

A feedforward NN Is shown In figure 12.12(a). In this example, the circuit has
three layers, with three 3-input neurons in each layer. Internal details of each

layer are depicted in figure 12.12(b).

[nput

b ool

Hidden layers

Figure:12.12 a

Introduction

Output layer

X1

X3

Figure:12.12b

Introduction

X; represents the ith input.

w;; Is the weight between input i1 and neuron |,
yj Is the Jth output.

Therefore, y1 = f(x1.wll + x2.w21 + x3.w31),
y2 = f(x1.wl2 + x2.w22 + x3.w32),

y3 = f(x1.wl3 + x2.w23 + x3.w33), | @ -

where f() is the activation function (linear threshold,
sigmoid, etc.).

Introduction

Watch This Video !

https://www.youtube.com/watch?v=bfmFfD2RIcg

Introduction

A “ring” architecture for the NN of figure 12.12 is presented in figure 12.13, which
Implements one layer of the NN.

yl y2 y3
L LUT ; LUT ; LUT
> > > »I
I r oy r oy
X1 @-»@-» p | X2 @-»@-» | | ® @-»@-» >
—4 2 —4 4 A
wll w22 w33
w3l w12 w23
w21 W32 wli3
E, . 4

Figure 12.13

Introduction

Each box represents one neuron.

As shown, there are several circular shift registers, one for each neuron
(vertical shifters) plus one for the whole set (horizontal shifter). The vertical
shifters hold the weights, while the horizontal one holds the inputs.

Notice that the relative position of the weights in their respective registers must
match that of the input values.

yl y2 y3

S ¢ — 4

« At the output of a vertical shifter there is a
MAC circuit, which accumulates the L, :)
product between the weights and the s é@ M Ci)*@ﬂ*
inputs. Y 3

w2l w32 wi3
‘) _4 4

Figure 12.13

Introduction

All shifters use the same clock signal. Therefore, after one complete circulation,
the following values will be available at the output of the MAC circuits:

x1.wll + x2.w21 + x3.w31 ,
x1.wl2 + x2.w22 + x3.w32 ,
x1.wl3 + x2.w23 + x3.w33

These values are then applied to a LUT (lookup table), which implements the

activation function (sigmoid, for example), thus producing the actual outputs,
yi, of the NN.

Introduction

In this Kind of circuit, truncation must be considered. Say that the inputs and
weights are 16 bits long. Then at the output of the MAC cells 32-bit numbers
would be the natural choice. However, since the actual outputs (after the LUT)
might be connected to another layer of neurons, truncation to 16 bits Is
required. This can be done in the LUT or in the MAC circuit.

Another approach is presented in figure 12.14, which is appropriate for general

purpose NNs (that is, with programmable weights). It employs only one input
to load all weights.

Introduction

yl y2 y3
t t t
LUT LUT LUT

\/
X1 =
X2 =P ‘ l
x3—’ O O
W = 2 - - = »- - > > >

Figure 12.14
NN implementation with only one input for the weights.

Introduction

In figure 12.14, the weights are shifted in sequentially until each register is
loaded with its respective weight.

The weights are then multiplied by the inputs and accumulated to produce the
desired outputs.

¥yl y2 y3

t t t

LUT LUT LUT

OO0 | {O-G

ONONO 00 P
il 1 l
X3 =P O >
w—»—\ — 3 > o > = &:
<

Figure 12.14
NN implementation with only one input for the weights.

web
Pencil

web
Pencil

web
Pencil

Introduction

NN example is in the next slides, which implementing the architecture of figure
12.14. However, the solution does not contain LUT(activation function).

The example on the next slides has the advantage of being simple, easily
understandable, and self-contained In the main code. Its only limitation Is that
the Inputs (x) and outputs (y) are specified rather than generic input and output,
thus making it inappropriate for large NNs. Everything else Is generic.

0 3 oW

9

10
11
12
13
14
15
16
1)
18
19

NN Example

LIBRARY ieee;
USE ieee.std logic 1164.all;
USE ieee.std logic arith.all; -- package needed for SIGNED

ENTITY nn IS

GENERIC (n: INTEGER := 3; -- # of neurons
m: INTEGER := 3; -- # of inputs or weights per neuron
b: INTEGER := 4); -- # of bits per input or weight

PORT (x1: IN SIGNED(b-1 DOWNTO 0);
X2: IN SIGNED(b-1 DOWNTO 0);
x3: IN SIGNED(b-1 DOWNTO 0);
w: IN SIGNED(b-1 DOWNTO 0);
clk: IN STD LOGIC;
test: OUT SIGNED(b-1 DOWNTO 0); -- register test output
yl: OUT SIGNED(2*b-1 DOWNTO 0);
y2: OUT SIGNED(2*b-1 DOWNTO 0);
y3: OUT SIGNED(2*b-1 DOWNTO 0));
END nn;

NN Example

21 ARCHITECTURE neural OF nn IS

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

TYPE weights IS ARRAY (1 TO n*m) OF SIGNED(b-1 DOWNTO 0);
TYPE inputs IS ARRAY (1 TO m) OF SIGNED(b-1 DOWNTO 0);
TYPE outputs IS ARRAY (1 TO m) OF SIGNED(2*b-1 DOWNTO 0);

BEGIN

PROCESS (clk, w,

VARIABLE

VARIABLE

VARIABLE

VARIABLE

VARIABLE
BEGIN

input:

output:

prod,
sign: STD LOGIC;

> 3

x2, X3)
weight: weights:= ("0000",™0000","0000","0000"™,"0000","0000","0000","0000™,"0000") ;

inputs;

acc:

outputs;

SIGNED(2*b-1 DOWNTO 0);

————— shift register inference: --——-———————--
IF (clk'EVENT AND clk='1"') THEN

weight := w & weight(1l TO n*m-1);
END IF;
————————— initialization: —-———————mmmm————— e
input(l) := x1;
input(2) := x2;

input(3)

NN Example

41 0 —————— multiply-accumulate: --—-—-———-———cc—-

42 Ll: FOR i IN 1 TO n LOOP L1 Forel TN L te k1 Leof

43 acc := (OTHERS => '0'); ,

44 L2: FOR 7 IN 1 TO m LOOP @ _ Z (,

45 prod := input(j)*weigth(m*(i-1)+7); . :F;r j IN 1"66 OMP
46 sign := acc(acc'LEFT); (t(j) }Fwe"a’\h{(\“*(é—\)-bj)
47 acc := acc + prod; ?YQ%f::'”PM ; 1

48 ~--- overflow check: —=eememeeeeeee——- ?YNJ;:thwk(Q*J“QAﬁw&()

49 IF (sign=prod(prod'left)) AND - T %

50 (acc(acc'left) /= sign) THEN T

51 acc := (acc'LEFT => sign, OTHERS => NOT sign); @ Prw(:: %ﬁl"\fiwé(’l—) %wq,\‘gl/\b(l—)
52 END IF; o U

53 END LOOP L2; | _wg

54 output(i) := acc; - |
55 END LOOP L1; S

56 0 @ —emm————— outputs: =

57 test <= weight(n*m);

58 yl <= output(1l);

59 y2 <= output(2);

60 y3 <= output(3);

61 END PROCESS;

62 END neural;

NN Example

SDD.IEIns 1‘Dlus 1.5lus Q.QUs 2.5'us 3.QUs 3.51us 4.[:!US 4.€:us S.QUS
-ck | 0|]| L gl Jol Il 1 1L
i i D3) al ' - / = J
= 2 D4 4
= X3 D5 5
= W D1 L & 2 1 & 3 ¥ 5 1% Y 7 3 8B % g
syt |(oo|oY 3 § 10 § 2 ¥ 34 § 46 § s § 0 § 4 ¥ 2%
Sy | Do 0 3 J 0o § 2 ¥ = § ® § %
Sy | DO 0 ! 4 Y wyY =

Figure 12.15
Simulation results of NN implemented in solution 1.

yl =x1.wl +x2.w2 +x3.w3 =(3)(-7)+
(4)(—8) + (5)(7) = —18 (represented as 256 — 18 =238); y2 =x1.w4+ x2.w5 +
x3.w6 = (3)(6) + (4)(5) + (5)(4) =58; and y3 =x1.w7+ x2.w8 + x3.w9 = (3)(3) +
(4)(2) + (5)(1) = 22. These values (238, 58, and 22) can be seen at the right end of
figure 12.15.

The assignments will be attached to your class room

End of lecture 16
Any Questions ?

