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Lecture 5

VHDL Sequential Code

2



Objectives of this Lecture
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• To understand what is the Sequential VHDL code.

• Also, this lecture is very important, for it allows a better

understanding of where the parallel VHDL code or sequential

VHDL code, as well as the consequences of using one or the other.



Contents of this Lecture
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• Introduction about Sequential VHDL code.

• Sequential VHDL code inside Processes

• Sequential VHDL code inside Processes\ IF

• Sequential VHDL code inside Processes\ WAIT

• Sequential VHDL code inside Processes\ CASE
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Introduction about Sequential VHDL code

• VHDL code can be concurrent (parallel) or sequential.

• As mentioned in lecture 4, VHDL code is inherently concurrent.

• PROCESSES, FUNCTIONS, and PROCEDURES are the only sections of code 

that are executed sequentially. However, as a whole, any of these blocks is still 

concurrent with any other statements placed outside it .
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Introduction about Sequential VHDL code
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Concurrent 

statements



Introduction about Sequential VHDL code

• The statements discussed in this section are all sequential, that is, allowed only inside

PROCESSES, FUNCTIONS, or PROCEDURES. They are: IF, WAIT, CASE, 

and LOOP. 

• VARIABLES are also restricted to be used in sequential code only (that is, inside a 

PROCESS, FUNCTION, or PROCEDURE). 
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Sequential VHDL code inside Processes
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• A PROCESS is a sequential section of VHDL code. It is characterized by the
presence of IF, WAIT, CASE, or LOOP, and by a sensitivity list (except
when WAIT is used).

• A PROCESS must be installed in the main code, and is executed every time a
signal in the sensitivity list changes (or the condition related to WAIT is 
fulfilled). Its syntax is shown below. 



Sequential VHDL code inside Processes \IF
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IF structure



Sequential VHDL code inside Processes \IF
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Example 6.1



Sequential VHDL code inside Processes \IF
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Sequential VHDL code inside Processes \IF
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DFF : D Flip Flop



Sequential VHDL code inside Processes \IF
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Example 6.2



Sequential VHDL code inside Processes \IF
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Sequential VHDL code inside Processes \IF
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Counter



Sequential VHDL code inside Processes \IF
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Example 6.3: shift register



Sequential VHDL code inside Processes \IF
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Example 6.3: shift register



Sequential VHDL code inside Processes \WAIT
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Sequential VHDL code inside Processes \WAIT
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Sequential VHDL code inside Processes \WAIT
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Sequential VHDL code inside Processes \WAIT
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• Finally, WAIT FOR is intended for simulation only (waveform
generation for testbenches). Example:

WAIT FOR 5ns;



Sequential VHDL code inside Processes \CASE
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• CASE is another statement intended exclusively for sequential code
(along with IF, LOOP, and WAIT). Its syntax is shown below:

• The CASE statement (sequential) is very similar to WHEN
(combinational).

Note : Parallel = Concurrent = Combinational



Sequential VHDL code inside Processes \CASE

23

• Here too all permutations must be tested.

• However, CASE allows multiple assignments for each test condition
(as shown in the previous slide), while WHEN allows only one.

• Like in the case of WHEN (lecture 4), here too ‘‘WHEN value’’ can
take up three forms:



Sequential VHDL code inside Processes \CASE
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Example 6.7: 

2-digit counter

a b c d e f g

1 1 1 1 1 1 1



Sequential VHDL code inside Processes \CASE
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Sequential VHDL code inside Processes \CASE
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2-digit counter



Assignments
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• Design the same DFF of example 6.1 by using WAIT statement.

• Design the same progressive 1-digit decimal counter of example 6.2 by using 
WAIT statement.



End of lecture 5

Any Questions ?
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