
Integrated Circuits Design by 
FPGA

أحمد مؤيد عبدالحسين. م.م

نجف/ الكلية التقنية الهندسية / جامعة الفرات الأوسط التقنية 

1



Lecture 5

VHDL Sequential Code

2



Objectives of this Lecture

3

• To understand what is the Sequential VHDL code.

• Also, this lecture is very important, for it allows a better

understanding of where the parallel VHDL code or sequential

VHDL code, as well as the consequences of using one or the other.



Contents of this Lecture

4

• Introduction about Sequential VHDL code.

• Sequential VHDL code inside Processes

• Sequential VHDL code inside Processes\ IF

• Sequential VHDL code inside Processes\ WAIT

• Sequential VHDL code inside Processes\ CASE

web
Highlight

web
Highlight



Introduction about Sequential VHDL code

• VHDL code can be concurrent (parallel) or sequential.

• As mentioned in lecture 4, VHDL code is inherently concurrent.

• PROCESSES, FUNCTIONS, and PROCEDURES are the only sections of code 

that are executed sequentially. However, as a whole, any of these blocks is still 

concurrent with any other statements placed outside it .

5



Introduction about Sequential VHDL code

6

Concurrent 

statements



Introduction about Sequential VHDL code

• The statements discussed in this section are all sequential, that is, allowed only inside

PROCESSES, FUNCTIONS, or PROCEDURES. They are: IF, WAIT, CASE, 

and LOOP. 

• VARIABLES are also restricted to be used in sequential code only (that is, inside a 

PROCESS, FUNCTION, or PROCEDURE). 

7



Sequential VHDL code inside Processes

8

• A PROCESS is a sequential section of VHDL code. It is characterized by the
presence of IF, WAIT, CASE, or LOOP, and by a sensitivity list (except
when WAIT is used).

• A PROCESS must be installed in the main code, and is executed every time a
signal in the sensitivity list changes (or the condition related to WAIT is 
fulfilled). Its syntax is shown below. 



Sequential VHDL code inside Processes \IF

9

IF structure



Sequential VHDL code inside Processes \IF

10

Example 6.1



Sequential VHDL code inside Processes \IF

11



Sequential VHDL code inside Processes \IF

12

DFF : D Flip Flop



Sequential VHDL code inside Processes \IF

13

Example 6.2



Sequential VHDL code inside Processes \IF

14



Sequential VHDL code inside Processes \IF

15

Counter



Sequential VHDL code inside Processes \IF

16

Example 6.3: shift register



Sequential VHDL code inside Processes \IF

17

Example 6.3: shift register



Sequential VHDL code inside Processes \WAIT

18



Sequential VHDL code inside Processes \WAIT

19



Sequential VHDL code inside Processes \WAIT

20



Sequential VHDL code inside Processes \WAIT

21

• Finally, WAIT FOR is intended for simulation only (waveform
generation for testbenches). Example:

WAIT FOR 5ns;



Sequential VHDL code inside Processes \CASE

22

• CASE is another statement intended exclusively for sequential code
(along with IF, LOOP, and WAIT). Its syntax is shown below:

• The CASE statement (sequential) is very similar to WHEN
(combinational).

Note : Parallel = Concurrent = Combinational



Sequential VHDL code inside Processes \CASE

23

• Here too all permutations must be tested.

• However, CASE allows multiple assignments for each test condition
(as shown in the previous slide), while WHEN allows only one.

• Like in the case of WHEN (lecture 4), here too ‘‘WHEN value’’ can
take up three forms:



Sequential VHDL code inside Processes \CASE

24

Example 6.7: 

2-digit counter

a b c d e f g

1 1 1 1 1 1 1



Sequential VHDL code inside Processes \CASE

25

web
Pencil



26

web
Pencil

web
Pencil

web
Pencil



Sequential VHDL code inside Processes \CASE

27

2-digit counter



Assignments

28

• Design the same DFF of example 6.1 by using WAIT statement.

• Design the same progressive 1-digit decimal counter of example 6.2 by using 
WAIT statement.



End of lecture 5

Any Questions ?

29


