Integrated Circuits Design by
FPGA

Cpuall e Lga daaf aa

Ciad [ Apwaigl) dSE) A IS f AR Jac ) < AN daala




VHDL



Objectives of this Lecture

» To understand what Is the Sequential VHDL code.

» Also, this lecture Is very important, for it allows a better
understanding of where the parallel VHDL code or sequential
VHDL code, as well as the consequences of using one or the other.

» To make comparison between IF , CASE , and WHEN statements.

» To Indicate the main reasons behind bad clocking.



Contents of this Lecture

» Sequential VHDL code inside Processes\ Loop
» Sequential VHDL code IF vs. CASE

» Sequential VHDL code CASE vs. WHEN

» Bad Clocking




Sequential VHDL code Inside Processes\ Loop

As the name says, LOOP is useful when a piece of code must be instantiated
several times.

PROCESSES, FUNCTIONS, and PROCEDURES are the only sections of
code that are executed sequentially. However, as a whole, any of these blocks

IS still concurrent with any other statements placed outside it .



Sequential VHDL code Inside Processes\ Loop

There are several ways of using LOOP, as shown in the syntaxes below. FOR
/ LOOP: The loop Is repeated a fixed number of times.

[label:] FOR identifier IN range LOOP
(sequential statements)
END LOOP [label];

WHILE / LOOP: The loop is repeated until a condition no longer holds .

[label:] WHILE condition LOOP
(sequential statements)
END LOOP [label];




Sequential VHDL code Inside Processes\ Loop

Example

WHILE (1 < 10) LOOP
WAIT UNTIL clk'EVENT AND clk='1l";
(other statements)

END LOOP;



Sequential VHDL code Inside Processes\ Loop

EXIT: Used for ending.

[label:] EXIT [label] [WHEN condition];

NEXT: Used for skipping loop steps.

[label:] NEXT [loop label] [WHEN condition];




Sequential VHDL code Inside Processes\ Loop

Example with NEXT: In the example below, NEXT causes LOOP to skip one iter-
ation when 1 = skip.

FOR 1 IN 0 TO 15 LOOP
NEXT WHEN i=skip; -- Jjumps to next iteration

i
END LOOP;



Sequential VHDL code Inside Processes\ Loop

Example 6.8: Carry Ripple Adder

Top level:

a
e -
b ¥
cin —» —» cout |
Figure 6.9

8-bit carry ripple adder of example 6.8

ab cin | s cout
00 O 0 O
01 O I 0
10 O 1 U
¥l 0 1
00 | L B
D1 1 g
1) | 0

L] |




Sequential VHDL code Inside Processes\ Loop

Example 6.8: Carry Ripple Adder

ap by a; b a; by
v v v v v v
co— T L Ft L—po » t |y
C C) C7
(cin (cout)
¥ ¥ v



Sequential VHDL code Inside Processes\ Loop

Each section of the latter diagram i1s a full-adder unit (section 1.4). Thus its out-
puts can be computed by means of:

Sj = 4; XOR bj XOR G



15
16
ik
18
19
20
21
22
23
24
25
26
27

————— Solution 1l: Generic, with VECTORS
LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY adder IS
GENERIC (length : INTEGER := 8);
PORT ( a, b: IN STD_LOGIC_VECTOR (length-1 DOWNTO 0);
cin: IN STD_LOGIC;
s: OUT STD_LOGIC_VECTOR (length-1 DOWNTO 0);
cout: OUT STD_LOGIC) ;
END adder;
ARCHITECTURE adder OF adder IS
BEGIN
PROCESS (a, b, cin)
VARIABLE carry : STD LOGIC VECTOR (length DOWNTO 0);
BEGIN
carry(0) := cin;
FOR i IN 0 TO length-1 LOOP
s(i) <= a(i) XOR b(i) XOR carry(i);
carry(i+l) := (a(i) AND b(i)) OR (a(i) AND
carry(i)) OR (b(i) AND carry(i));
END LOOP;
cout <= carry(length);
END PROCESS;
END adder;

13



Sequential VHDL code Inside Processes\ Loop

100.10ns 200.10ns 300an3 400.10ns
= cl 0
D 2 HOE | 00 % 02 ) 04 ¥ 06 ) 08 0E X 10 ¥
= b Hos | FF ¥ FD ) FC X 00 § 02 ¥ 08 ¥ 0A J
P s H 12 00 Y 06 Y DA {16 YY 1A
- cO 0
Figure 6.10

Simulation results of example 6.8.

Example 6.8: Carry Ripple Adder

14



Sequential VHDL code Inside Processes\ Loop

A . inp(7) ———
Example 6.9: Simple Barrel Shifter ‘ o, R
inp(6) — | (
MUX | outp(6)
inp(5) — (
MUX L outp(5)
mp(4) — il:
MUX L outp(4)
inp(3) (
MUX L outp(3)
inp(2) - (
MUX [ outp(2)
inp(l) = (
MUX | outp(l)
mp(0) — (
MUX L outp(0)
L —
shift

Figure 6.11
Simple barrel shifter of example 6.9.



Sequential VHDL code Inside Processes\ Loop

Example 6.9: Simple Barrel Shifter

5D.llJns 1 DEI.ans 150.10ns QDD.ans 25D.iDns 300.an5 350.1[]ns 400.an8
i@ inp | DO 0 f 20 } 40 f 60 f 80 } 100 § 120 f 140 }160
= shift 0 Aa—
S outp | DO 0 % 20 ¥ 40 ¥ 60 f 160 ¥ 200 ) 240 f 24 }
Figure 6.12

Simulation results of example 6.9.



Sequential VHDL code Inside Processes\ Loop

LIBRARY ieee;
USE ieee.std logic 1164.all;
ENTITY barrel IS
GENERIC (n: INTEGER := 8);
PORT ( inp: IN STD LOGIC VECTOR (n-1 DOWNTO 0);
shift: IN INTEGER RANGE 0 TO 1;
outp: OUT STD LOGIC VECTOR (n-1 DOWNTO 0));

10 END barrel;

12 ARCHITECTURE RTL OF barrel IS

13
14
15
16
L7
18
19
20
21
22
23
24
25

BEGIN
PROCESS (inp, shift)
BEGIN
IF (shift=0) THEN
outp <= inp;
ELSE
outp(0) <= '0';
FOR i IN 1 TO inp'HIGH LOOP
outp(i) <= inp(i-1);
END LOOP;
END IF;
END PROCESS;
END RTL;



Sequential VHDL code Inside Processes\ Loop

2 LIBRARY ieee;
3 USE ieee.std logic 1164.all;

ENTITY LeadingZeros IS
PORT ( data: IN STD LOGIC VECTOR (7 DOWNTO 0);
zeros: OUT INTEGER RANGE 0 TO 8);
END LeadingZeros;

O 31 oY On

10 ARCHITECTURE behavior OF LeadingZeros IS

Example 6.10: Leading Zeros

11
12
13
14
15
16
T
18
19
20
21
22
23

—

BEGIN
PROCESS (data)
VARIABLE count: INTEGER RANGE 0 TO 8;
BEGIN
count := 0;
FOR 1 IN data'RANGE LOOP
CASE data(i) IS
WHEN '0' => count := count + 1;
WHEN OTHERS => EXIT;
END CASE;
END LOOP;
zeros <= count;
END PROCESS;

24 END behavior;



Sequential VHDL code Inside Processes\ Loop

Example 6.10: Leading Zeros

1DU.lUns QDD}Dns S’DU.IDns dDD.LDns SDD.ans BDU.lUns
iD= data SEFE TR T P EET RN RE R ES IR EBE R EE T ){
Spwos (D8 8 §7 f 6 } 5 ' 4
Figure 6.13

Simulation results of example 6.10.



Sequential VHDL code IF vs. CASE

Example: The codes below implement the same physical multiplexer circuit.

——== With Bl =————ce———co——
IF (sel="00") THEN x<=a;
ELSIF (sel="01") THEN x<=b;
ELSIF (sel="10") THEN x<=c;
ELSE x<=d;

——== With CASE: -
CASE sel IS

WHEN "00" => x<=a;

WHEN "01" => x<=b;

WHEN "10" => x<=cC;

WHEN OTHERS => x<=d;
END CASE;



Sequential VHDL code WHEN vs. CASE

Example: From a functional point of view, the two codes below are equivalent.

———— With TEEN: -———-———————————
WITH sel SELECT
X <= a WHEN "000",

b WHEN "001",
c WHEN "O010",
UNAFFECTED WHEN OTHERS;

———— With EESE: —-————-c————e—— e
CASE sel IS

WHEN "000" => x<=a;

WHEN "001" => x<=b;

WHEN "010" => x<=C;

WHEN OTHERS => NULL;
END CASE;



Sequential VHDL code WHEN vs. CASE

Table 6.1
Comparison between WHEN and CASE.
WHEN CASE
Statement type Concurrent Sequential

Usage Only outside PROCESSES, Only inside PROCESSES,
FUNCTIONS, or FUNCTIONS, or
PROCEDURES PROCEDURES

All permutations must be tested | Yes for WITH/SELECT/WHEN | Yes

Max. # of assignments per test 1 Any

No-action keyword

UNAFFECTED

NULL




Bad Clocking

PROCESS (clk)
BEGIN
IF(clk'EVENT AND clk='1l') THEN
counter <= counter + 1;
ELSIF(clk'EVENT AND clk='0"') THEN
counter <= counter + 1;
END IF;

END PROCESS;

the compiler might display a message of the type ““signal does not hold
value after clock edge’ or similar



Bad Clocking

In this case, besides the messages already described, the compiler might also
complain that the signal counter i1s multiply driven. In any case, compilation
will be suspended.




Bad Clocking

PROCESS (clk)
BEGIN
IF(clk'EVENT) THEN
counter := counter + 1;
END IF;

END PROCESS;

In this case the compiler assumes a default test value (say “AND clk="1"") or issue a
message of the type ““clock not locally stable™.



Bad Clocking

Finally, if a signal appears in the sensitivity list, but does not appear in any of
the assignments that compose the PROCESS, then it is likely that the
compiler will simply ignore it.

PROCESS (clk)

BEGIN

counter := counter + 1;

END PROCESS;

However, a message of the type “ignored unnecessary pin clk” might be issued instead.



The assignments will be attached to your class room.



End of lecture 6

Any Questions ?




