Integrated Circuits Design by
FPGA

Cpuall e Lga daaf aa

Ciad [Apwaigl) dSE) A IS f AR Jac) < AN daala

Finite State Machines (FSM)

Objectives of this Lecture

» To define the term Finite State Machines (FSM). And to recognize
Its principles.

 To Implement digital systems using FSM method.

» To Indicate the difference between FSM style #1 and FSM style #2

Contents of this Lecture

* FSM introduction.

* FSM style #1

* FSM style #2

FSM introduction

FSM can be very helpful in the design of certain types of systems, particularly
those whose tasks form a well-defined sequence (digital controllers, for
example).

———————————————————————————

: Comparison

I
I
| S [, Qutput
Digital I r Correction N
controller DAG element Process
Input of 1 Error

required |
value

Measurement

ADC |«

I

|

|

I

I I

I |

I]

: Feedback of signal which is a : Measured
| digital measure of the variable : value
|

| :

l |

I |

I |

being measured

Microcontroller

FSM introduction

Figure 8.1 shows the block diagram of a single-phase state machine. As
Indicated In the figure, the lower section contains the sequential logic (flip-

flops), while the upper section contains the combinational logic (parallel
VHDL).

Combinational
logic

pr_state nx_state

Sequential
logic

Figure 8.1
Mealy (Moore) state machine diagram.

FSM introduction

The combinational (upper) section has two inputs, being one pr_state (present

state) and the other the external input proper. It has also two outputs, nx_state
(next state) and the external output proper.

Combinational
logic

pr_state nx_state

Sequential
logic

4— clock

<4— reset

Figure 8.1
Mealy (Moore) state machine diagram.

FSM introduction

The sequential (lower) section has three inputs (clock, reset, and nx_state),

and one output (pr_state). Since all flip-flops are in this part of the system,
clock and reset must be connected to It.

Combinational
logic

pr_state nx_state

Sequential
logic

4— clock

<4— reset

Figure 8.1
Mealy (Moore) state machine diagram.

FSM introduction

From a VHDL perspective, it is clear that the lower part, being sequential, will
require a PROCESS, while the upper part, being combinational, will not.

However, it Is also possible to use PROCESS inside the upper part to
Implement combinational (parallel) design.

INPUL se— - OULpUL

Combinational
logic

pr_state nx_state

<

Sequential
<4— clock

logic

<4— reset

Figure 8.1
Mealy (Moore) state machine diagram.

FSM introduction

One important aspect related to the FSM approach is that, though any
sequential circuit can in principle be modeled as a state machine, this iIs not
always advantageous. The reason Is that the code might become longer, more
complex, and more error prone than in a conventional approach. This Is often
the case with simple registered circuits, like counters.

The FSM approach Is advisable in systems whose tasks constitute a well -
structured list so all states can be easily enumerated. That Is, in a typical state
machine implementation, we will encounter, at the beginning of the
ARCHITECTURE, a user-defined enumerated data type, containing a list of
all possible system states.

FSM style #1

Counter Example

FSM method could be used to implement a counter circuit. The problem with
the FSM Is that when the number of states is large it becomes cumbersome to
enumerate them all, a problem easily avoided using the LOOP statement or
other conventional approaches.

The state diagram of a 0-to-9 circular counter I1s shown in figure 8.2. The
states were called zero, one, . . . , nine, each name corresponding to the

decimal value of the output.

FSM style #1

) @

ISt

Figure 8.2

States diagram of example 8.1.

nbd WN e

o

10
11
12
13
14
15
16
: i)
18
19
20
21
22
23

FSM style #1

LIBRARY ieee;
USE ieee.std logic 1ll164.all;

ENTITY countexr IS

PORT (clk, rst: IN STD_LOGIC;
count: OUT STD LOGIC VECTOR (3 DOWNTO 0));
END counter;
ARCHITECTURE state machine OF counter IS
TYPE state IS (zero, one, two, three, four,
five, six, seven, eight, nine);
SIGNAL pr_state, nx state: state;
BEGIN
————————————— Lower section: —--———————————-
PROCESS (rst, clk)
BEGIN
IF (rst='1l') THEN
pr_state <= zero;
ELSIF (clk'EVENT AND clk='1') THEN
pr_state <= nx state;
END IF;
END PROCESS;

24
25
26
2.1
28
29
30
31
32
33

34
35
36
37
38
39
40
41
42

————————————— Upper section:
PROCESS (pr_state)
BEGIN
CASE pr state IS
WHEN zero =>
count <= "0000";
nx state <= one;
WHEN one =>
count <= "0001";

nx state <= two;

WHEN two =>
count <= "0010":
nx state <= three;
WHEN three =>
count <= "0011";
nx state <= four;
WHEN four =>
count <= "0100";

nx state <= five;

FSM style #1

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

WHEN five =>
count <= "0101";
nx state <= six;
WHEN six =>
count <= "0110";
nx state <= seven;
WHEN seven =>
count <= "0111";
nx state <= eight;
WHEN eight =>
count <= "1000";
nx state <= nine;
WHEN nine =>
count <= "1001";
nx state <= zero;
END CASE;
END PROCESS;

60 END state machine;

FSM style #1

250.0ns 500.0ns 750.0ns 1.0us
z9= clk 0 [
= rst 1
@ prstate | DO IEEEF T BEEEET T EBEEEE RS
& count | DO 6 f 1 Y2 Y344 x5 te §7 ¥ayayn
Figure 8.3

Simulation results of example 8.1.

Example 8.1 Counter

FSM style #1

Example 8.2 : Simple FSM #1

d=1

b = pom > X |
d=0 d=0

* * d=1

rst
clk rst

Figure 8.4
State machine of example 8.2

s W N e

(o))

8

9

10
1k
12
13
14
15
16
17
18
19

FSM style #1

ENTITY simple fsm IS

PORT: (&a; b; d; c¢ik,; rst: IN BIT:
X: OUT BIT);

END simple fsm;

ARCHITECTURE simple fsm OF simple fsm IS
TYPE state IS (stateA, stateB);
SIGNAL pr state, nx state: state;

BEGIN
————— Lower section: —--—--—————————eeee——-
PROCESS (rst, clk)

BEGIN
IF (rst='1l') THEN
pr_state <= stateA;
ELSIF (clk'EVENT AND clk='1l') THEN
pr_state <= nx state;
END IF;
END PROCESS;

20
g |
22
23
24
25
26
27
28
29
30

31
32
33
34
35

—————————— Upper section: —--—————————eee—-
PROCESS (a, b, d, pr state)
BEGIN
CASE pr_ state IS
WHEN stateA =>
X <= a;
IF (d='1l') THEN nx state <= stateB;
ELSE nx_state <= stateA;
END IF;
WHEN stateB =>

X <= b;

IF (d='1l"') THEN nx state <= stateA;
ELSE nx state <= stateB;
END IF;
END CASE;
END PROCESS;

36 END simple fsm;

37

FSM style #2

Logic gates Logic gates Flip-flops

INPUL =y _ﬂ = Output Input === ﬂ | ﬁr = OULpUL
<

Flip-flops Flip-flops
< <
(a) (b)

Figure 8.6
Circuit diagrams for (a) Design Style #1 and (b) Design Style #2.

The only difference is ?

FSM style #2

Example 8.3 : Simple FSM #2

d=1

d=0 m d=0

d=1
ISt

9

10
11
12
13
14
15
16
17
18
19
20
21

FSM style #2

ENTITY simple fsm IS
PORT (a, b, d, clk, rst: IN BIT:
X: OUT BIT);
END simple fsm;

ARCHITECTURE simple fsm OF simple fsm IS
TYPE state IS (stateA, stateB);
SIGNAL pr state, nx state: state;
SIGNAL te;p: BIT; -
BEGIN
————— Lower section: --——-——————cce———.
PROCESS (rst, clk)
BEGIN
IF (rst='1l"') THEN
pr_state <= stateA;
ELSIF (clk'EVENT AND clk='1l') THEN
X <= temp;
pr state <= nx state;
END IF;
END PROCESS;

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

—————————— Upper section: —-———————————cc—-
PROCESS (a, b, d, pr state)
BEGIN
CASE pr state IS
WHEN stateA =>
temp <= a;
IF (d='1l') THEN nx state <= stateB;
ELSE nx state <= stateA;
END IF;
WHEN stateB =>
temp <= b;
IF (d='1l') THEN nx state <= stateA;
ELSE nx state <= stateB;
END IF;
END CASE;
END PROCESS;
END simple fsm;

FSM style #1

Example 8.4 : String detector

rst

Figure 8.8
States diagram for example 8.4.

FSM style #1

§ csmeseeess s s s s e 23 | mmmm————— Upper section: ——————————e———o
LIBRARY ieee; 24 PROCESS (d, pr_state)
USE ieee.std logic 1164.all; 25 BEGIN

B | i s e s s iy S 26 CASE pr state IS

5 ENTITY string detector IS 27 WHEN zero =>

6 PORT (d, clk, rst: IN BIT; 28 q<='0";

7 qg: OUT BIT); 29 IF (d='1') THEN nx state <= one;

8 END string detector; 30 ELSE nx_state <= zero;

O o S i e e 31 END IF;

10 ARCHITECTURE my arch OF string detector IS 32 WHEN one =>

i 7§ TYPE state IS (zero, one, two, three); 33 q<='0";

12 SIGNAL pr state, nx state: state; 34 IF (d='1l"') THEN nx_state <= two;

13 BEGIN 35 ELSE nx state <= zero;

14 3z ————- Lower Sectiony -———————cemcemmmeme o 36 END IF;

15 PROCESS (rst, clk) 37 WHEN two =>

16 BEGIN 38 g <= '0';

17 IF (rst='1') THEN 39 IF (d='l') THEN nx state <= three;

18 pr state <= zero;

19 ELSIF (clk'EVENT AND clk='1') THEN Al ELSE DX _gtate <2 Zero;

20 pr _state <= nx state; 4l END IEjy

21 END IF;

22 END PROCESS;

FSM style #1

42 WHEN three =>

43 g-s= Y1z

44 IF (d='0') THEN nx state <= zero;
45 ELSE nx state <= three;

46 END IF;

47 END CASE;

48 END PROCESS;

49 END my arch;
50 ===

FSM style #1

1DU{Dns 2ODAIDns SDD.IEIns AUD.ans *SEID.IEIns BDDans 7OD.ans BDD.anS QOD.IEIr
g5 clk 0 [==L
= rst 1
- d 0
@V pr_state | DO 0 r 1 3 2 ¥ F oEp T ¥ ¥ % 2 f 0
- 0
Figure 8.9

Simulation results of example 8.4.

Example 8.4 : String detector

The assignments will be attached to your class room.

End of lecture 8

Any Questions ?

