Integrated Circuits Design by
FPGA

Cpuall e Lga daaf aa

Ciad [Apwaigl) dSE) A IS f AR Jac) < AN daala

Finite State Machines (FSM)

Objectives of this Lecture

* To Implement the example of Traffic Light Controller (TLC),
using FSM method by FPGA technique.

* To understand the FSM method.

Contents of this Lecture

* FSM Introduction. (Review)

» TLC example

FSM introduction

FSM can be very helpful in the design of certain types of systems, particularly
those whose tasks form a well-defined sequence (digital controllers, for

example).
1 2 3

FSM introduction

Figure 8.1 shows the block diagram of a single-phase state machine. As
Indicated In the figure, the lower section contains the sequential logic (flip-

flops), while the upper section contains the combinational logic (parallel
VHDL).

Combinational
logic

pr_state nx_state

Sequential
logic

Figure 8.1
Mealy (Moore) state machine diagram.

FSM introduction

The combinational (upper) section has two inputs, being one pr_state (present

state) and the other the external input proper. It has also two outputs, nx_state
(next state) and the external output proper.

Combinational
logic

pr_state nx_state

Sequential
logic

4— clock

<4— reset

Figure 8.1
Mealy (Moore) state machine diagram.

FSM introduction

The sequential (lower) section has three inputs (clock, reset, and nx_state),

and one output (pr_state). Since all flip-flops are in this part of the system,
clock and reset must be connected to It.

Combinational
logic

pr_state nx_state

Sequential
logic

4— clock

<4— reset

Figure 8.1
Mealy (Moore) state machine diagram.

FSM introduction

From a VHDL perspective, it is clear that the lower part, being sequential, will
require a PROCESS, while the upper part, being combinational, will not.

However, it Is also possible to use PROCESS inside the upper part to
Implement combinational (parallel) design.

INPUL se— - OULpUL

Combinational
logic

pr_state nx_state

<

Sequential
<4— clock

logic

<4— reset

Figure 8.1
Mealy (Moore) state machine diagram.

FSM introduction

One important aspect related to the FSM approach is that, though any
sequential circuit can in principle be modeled as a state machine, this iIs not
always advantageous. The reason Is that the code might become longer, more
complex, and more error prone than in a conventional approach. This Is often
the case with simple registered circuits, like counters.

The FSM approach Is advisable in systems whose tasks constitute a well -
structured list so all states can be easily enumerated. That Is, in a typical state
machine implementation, we will encounter, at the beginning of the
ARCHITECTURE, a user-defined enumerated data type, containing a list of
all possible system states.

TLC Example

Operation Mode
State REGULAR TEST STANDBY
Time Time Time

RG timeRG (30s) | tmeTEST (1s) -—-
RY timeRY (5s) ttimeTEST (1s) ---
GR timeGR (45s) | timeTEST (15) -—-
YR timeYR (3s) timeTEST (1s) -
YY - -—- Indefinite

000
Q00

TLC Example

timeGR

timeYR

timeRG timeYR

timeRG

Figure 8.10
Specifications and states diagram (regular mode) for example 8.5.

TLC Example

TLC Example

2 LIBRARY ieee;
USE ieee.std logic 1164.all;

e e e e e s i
5 ENTIETY tlc IS

6 PORT (clk, stby, test: IN STD LOGIC;

7 rl, r2, yl, y2, gl, g2: OUT STD LOGIC);
8 END tlc;

B omeovmsie s oo iy e e e
10 ARCHITECTURE behavior OF tlc IS

11 CONSTANT timeMAX : INTEGER := 4500; -- 45 sec
12 CONSTANT timeRG : INTEGER := 3000; -- 30 sec

13 CONSTANT timeRY : INTEGER := 500; --5sec

14 CONSTANT timeGR : INTEGER := 4500; -- 45 sec

15 CONSTANT timeYR : INTEGER := 500; -- 5 sec

16 CONSTANT timeTEST : INTEGER := 100; -- 1sec

17 TYPE state IS (RG, B¥Y, GR, YR, YY);

18 SIGNAL pr state, nx state: state;

19 SIGNAL time : INTEGER RANGE 0 TO timeMAX;

web
Pencil

TLC Example

20 BEGIN

21— Lower section of state machine: ----
22 PROCESS (clk, stby)

23 VARIABLE count : INTEGER RANGE 0 TO timeMAX;
24 BEGIN

25 IF (stby='1') THEN

26 pr _state <= ¥YY;

27 count := 0;

28 ELSIF (clk'EVENT AND clk='1l') THEN

29 count := count + 1;

30 IF (count = time) THEN

31 pr state <= nx state;

32 count := 0;

33 END IF;

34 END IF;

35 END PROCESS;

TLC Example

36 ———————- Upper section of state machine: —----

37 PROCESS (pr_state, test)

38 BEGIN

39 CASE pr_state IS

40 WHEN RG =>

41 rli<='1'; r2<='0'; yl<='0"'; y2<='0"'; gl<='0"'; g2<='1l"';
42 nx state <= RY;

43 IF (test='0') THEN time <= timeRG;

44 ELSE time <= timeTEST;

45 END IF;

46 WHEN RY =>

47 ri<='1'"; r2<='0'; yl<='0"'; y2<='1'; gl<='0'; g2<='0"';
48 nx state <= GR;

49 IF (test='0') THEN time <= timeRY;

50 ELSE time <= timeTEST;

51 END IF;

52 WHEN GR =>

53 rl<='0'; r2<='1l'; yl<='0'; y2<='0'; gl<='1l'; g2<='0"';
54 nx state <= YR;

55 IF (test='0') THEN time <= timeGR;

56 ELSE time <= timeTEST;

57 END IF;

58 WHEN YR =>

59 rl<='0'; r2<='1l'; yl<='1"'; y2<='0"'; gl<='0'; g2<='0"';
60 nx_state <= RG;

61 IF (test='0') THEN time <= timeYR;

62 ELSE time <= timeTEST;

63 END IF;

64 WHEN YY =>

65 ri<='0"'; r2<='0"'; yl<='1l'; y2<='1l'; gl<='0'; g2<='0"';
66 nx_state <= BEN;

67 END CASE;

68 END PROCESS;

69 END behavior;

The assignments will be attached to your class room.

End of lecture 9

Any Questions ?

