Alfurat Al-Awsat Technical University
Technical College / Al-Najaf
Department : Building \& Construction Technology Engineering
Subject: Theory of Structures
Class: Third year
Lecturer : Professor Dr. Hakim Alkurayshi

Lecture (11) examples on Influence lines in beams

Example 1.

Draw the influence lines for R1,R2 and M2 . The self-weight of the beam is 3 tones $/ \mathrm{m}$. A uniform load $2 \mathrm{t} / \mathrm{m}$ and a load of 20 t passes over this beam. Find the maximum value of the fixed end moment M2.

To draw the I.L. for R1,R2 \& M2.Put the load P1=1 on R1.If we take moment about hinge ,this will give us $\mathrm{R} 1=1, \mathrm{R} 2=0$ and to find the value of M 2 for this case take moment about point 2.
$\sum M_{2}=0 \ldots \ldots \ldots \ldots \ldots . R_{1} \times 12-1 \times 12+M_{2}=0$
$1 \times 12-1 \times 12+M_{2}=0 \ldots \ldots \ldots \ldots \ldots \ldots . . . M_{2}=0$
Fix that points on the drawing. Now put the load P1=1 on the hinge, R1=0, R2=1. Take moment about 2 to find out M2.
$\sum M_{2}=0 \ldots \ldots \ldots \ldots \ldots .1 x 8-M_{2}=0 \ldots \ldots \ldots \ldots . M_{2}=8 t . m$
Fix that point on the drawing.
Finally, put the load $P 1=1$ on point $2, R 1=0$. Take moment about 2 to find out $M 2 . M 2=0$, draw that .

Now to find maximum M 2 ,multiply the distributed load by the area of the moment M2 influence line.
$\mathrm{M} 2=3 \times[0.5 \times 8 \times 12]+2 \times[0.5 \times 8 \times 12]+20 \times 8=400$ t.m(hogging)

Example 2. Draw the influence line for R2. The self-weight of this beam is 2 tones/m. A uniform load $1.2 t / m$ and a single load of $30 t$ moves on the beam .Find the maximum value of $R 2$.
$\Sigma_{\mathrm{M} 1}=\mathbf{O}$
18 R1+8R2=0 \qquad $.9 R 1=-4 R 2$
$\Sigma \mathrm{M}_{\mathrm{H} 2}=\mathbf{O}$
26R1+16R2-1x8=0
6.5 R1+4R2=2
......(2)
Here the unit load $\mathrm{P}=1$ must be applied at the position of the applied concentrated load which is here equal to 30 t .
6.5 R1-9R1=2 \qquad .R1=-0.8t R2=-1.8t

$$
(R 2)_{\max .}=2 \times\{0.5 \times 1.8 \times 26+0\}+1.2 \times\{0.5 \times 1.8 \times 26\}+30 \times 1.8=128.88 \mathrm{t} \text { (up) }
$$

