Alfurat Al-Awsat Technical University
Technical College / Al-Najaf
Department : Building \& Construction Technology Engineering
Subject: Theory of Structures
Class: Third year
Lecturer : Professor Dr. Hakim Alkurayshi

Statically determinate arches

Shear force and bending moments in beams
Lecture (7) Concept of S.F. and B.M.

An arch is a curved beam for large spans.

Beam resting on the arch (Bridges)

At any x-section of the arch, there are axial force, shearing force and bending moment.

V
For the whole arch or any portion there are three equations of equilibrium:
$\Sigma \mathrm{Fx}=0 \quad, \quad \Sigma \mathrm{Fy}=0 \quad \& \quad \Sigma \mathrm{M}=0 \quad$......Or any alternatives.
At each interior hinge , the B.M. $=0$. Therefore , the arch is statically determinate
if number of external reactions $\mathbf{= 3 +}$ Number of interior hinges. See the following examples:

Cantilevering arch

3 unknown reactions and no interior hinge ,so it is statically determinate.

4 unknown reactions and no interior hinge ,so it is statically indeterminate.

3-Hinged arch

4 unknown reactions and one interior hinge , $3+1=4$,so it is statically determinate.

3-Hinged arch
5 unknown reactions and two interior hinge , $3+2=5$,so it is statically determinate.

Analysis of Three hinged arch

This is statically determinate . It has 3-hinges (interior and exterior). The external reactions must be found first in order to calculate the axial force and the bending moment at any x-section. There are three methods to find the external reactions .
$1^{\text {ST }}$ Method (Using bending moment $=0$ at each hinge)

To find V1 and H1 . B.M. $=0$ at interior hinge H \qquad
$\Sigma \mathrm{M}=0 \quad, \operatorname{Or}(\mathrm{~B} . \mathrm{M} .=0)$ at hinged end (2) \qquad
Two equations will solve two unknowns (H 1 and V 1) .
Use $\sum F x=0$ to find $H 2$,

Use $\Sigma \mathrm{Fy}=0$ to find V 2,
Check by $\Sigma \mathrm{M}=0$ at hinged end (1).
$\underline{2}^{\text {ND }}$ Method (Separating into segments at the interior hinges)
Let V_{H} and H_{H} be the internal reactions at the interior hinge . There are 6 unknowns and there are $3 \times 2=6$ equations .

First find V_{H} and H_{H} by using $\Sigma \mathrm{M}=0$ at hinged end (1) for left side. $\Sigma \mathrm{M}=0$ at hinged end (2)for right side. When V_{H} and H_{H} are found, then use $\Sigma F x=0$ and $\Sigma \mathrm{Fy}=0$ for each segment. Check by taking the whole arch and use $\Sigma \mathrm{M}=0$ about any point.

$3^{\text {RD }}$ Method (Graphical)

Here the loads must act on only one segment. The whole arch will be under three concurrent forces.

The resultant reaction for the hinge at the side of no force must pass through the interior hinge to give B.M. $=0$ (for R_{1}). Then draw R_{2} to meet at one point with R_{1} and the resultant of the external loads.

Example:
Find the external reactions and then find S.F. and B.M. at the load. The arch is semicircular.

Solution :
$1^{\text {ST }}$ Method : (Using B.M. $=0$ at hinges)
Take the left side and use B.M. $=0$ at H .
V1X30-H1X30=0
V1=H1

Use $\Sigma \mathrm{M}=0$ at (2),
V1X60-30X20 $+\mathrm{H} 1 \mathrm{XO}=0 \ldots \ldots(2)$, Then V1=10 \mathbf{t} (Up),So H1=10t (to the right)
Use $\sum F x=0$, then $\mathbf{H 2} \mathbf{= H} \mathbf{1}=\mathbf{1 0 t}$ (to the left)
Use $\Sigma F y=0$, then $\mathbf{V 2}=\mathbf{3 0}-\mathbf{V 1}=20 \mathbf{t}$ (Up)
Check by $\Sigma \mathrm{M}=0$ at end (1)
$\mathrm{V} 2 \times 60+\mathrm{H} 2 \mathrm{xO}-30 \times 40 . \ldots20 \times 60+0-1200=0 \quad$ (o.k.)
The B.M. at the load is $M=H 2{ }^{*} y-V 2 x 20 \ldots . .$. Here y is found from $x^{2}+y^{2}=r^{2}$
$10^{2}+y^{2}=30^{2} \quad \ldots \ldots . y=V(900-100=28.28$
Then $\mathrm{M}=10 \times 28.28-20 \times 20=117.2 \mathrm{t}$.m (Opening the curve).
$\underline{2^{N D} \text { Method (Separating into segments) }}$

Use $\Sigma \mathrm{M}=0$ at end (1),
$\mathrm{V}_{\mathrm{H}} .30-\mathrm{H}_{\mathrm{H}} .30=0 \ldots \ldots \ldots \ldots . . \ldots . . \mathrm{V}_{\mathrm{H}}=\mathrm{H}_{\mathrm{H}}$
Use $\Sigma \mathrm{M}=0$ at end (2),
$30 \times 20-V_{H} \cdot 30-H_{H} \cdot 30=0$ \qquad .Or $20-V_{H}-H_{H}=0$

Solve (1) \& (2), $V_{H}=H_{H}=10 t$.
Take left side and use $\Sigma F x=0$ and $\Sigma F y=0$,
$H_{1}=H_{H}=10 t$ (to the right)
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{H}}=10 \mathrm{t}$ (UP)
Take the right side , $\mathrm{H}_{2}=\mathrm{H}_{\mathrm{H}}=10 \mathrm{t}$ (to the left), $\quad \mathrm{V}_{2}=30-\mathrm{V}_{\mathrm{H}}=20 \mathrm{t}$ (UP)
Check by any equation for the whole arch.
The B.M. at the load 30 t is :
$M=H_{2} x \sqrt{30^{2}-10^{2}}-V_{2} x 20=-117.15 t . m(o p e n i n g$ the curvature)
$3^{\text {RD }}$ Method (Graphical)
(1) Determination of directions of reactions.

$$
P=30 t
$$

(2) Triangle of forces.

\mathbf{R}_{2}

$$
\begin{aligned}
\frac{R_{1}}{\sin (21.1)} & =\frac{30}{\sin (117.45)} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots R_{1}=12.2 t \\
\frac{R_{2}}{\sin (41.45)} & =\frac{30}{\sin (117.45)} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots R_{2}=22.36 t
\end{aligned}
$$

Problems to be solved by the students:

1. Find the external reactions, the axial force ,shear force and bending moment at the crown C .

Answer:

External reactions:

$\mathrm{V} 1=1.83 \mathrm{t}(\mathrm{Up}), \mathrm{H} 1=1.055 \mathrm{t}$ (to the right), $\mathrm{V} 2=6.83 \mathrm{t}(\mathrm{Up}), \mathrm{H} 2=6.055 \mathrm{t}$ (to the left)

Axial force at C :

$\mathrm{N}=\mathrm{H} 1=1.055 \mathrm{t}$ (compression), just to the left of C .
$\mathrm{N}=\mathrm{H} 2=6.055 \mathrm{t}$ (compression), just to the right of C .

Shearing force at C :

$\mathrm{V}=\mathrm{V} 1=1.53 \mathrm{t}$ (just to the left of C) , $\mathrm{V}=\mathrm{V} 2=6.83 \mathrm{t}$ (just to the right of C)

Bending moment at C :

$\mathrm{M}=\mathrm{H} 1 \times 10-\mathrm{V} 1 \times 10=-7.75 \mathrm{t} . \mathrm{m}$ (opening the curvature)
2. Find the external reactions, the axial force ,shear force and bending moment at C .

Answer:

External reactions:

$\mathrm{V} 1=5.32 \mathrm{t}$ (Up) , $\mathrm{H} 1=3.19 \mathrm{t}$ (to the right), $\mathrm{V} 2=4.68 \mathrm{t}$ (Up) , $\mathrm{H} 2=-14.13 \mathrm{t}$ (to the right)

Axial force at C:

$\mathrm{N}=\mathrm{H} 1=3.19 \mathrm{t}$ (compression), or $\mathrm{N}=\mathrm{H} 2+20 \cos 30=3.19 \mathrm{t}$.

Shearing force at C:

$\mathrm{V}=\mathrm{V} 1=5.32 \mathrm{t}, \quad$ Or $\mathrm{V}=20 \sin 30-\mathrm{V} 2=5.32 \mathrm{t}$

Bending moment at C :

$\mathrm{M}=\mathrm{H} 1 \times 7-\mathrm{V} 1 \mathrm{x} 6=-9.59 \mathrm{t} . \mathrm{m}$ (opening the curvature)

