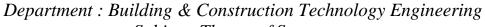


Alfurat Al-Awsat Technical University Technical College / Al-Najaf



Subject: Theory of Structures Class: Third year

Lecturer: Professor Dr. Hakim Alkurayshi

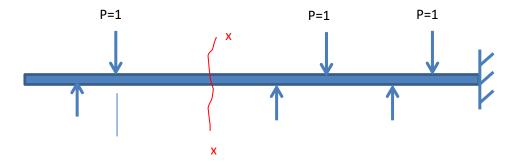
.....

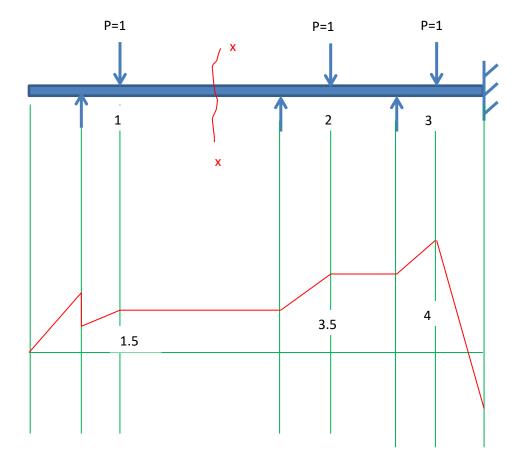
Lecture (9) Influence lines in beams and trusses

<u>Definition</u>: The influence line (or influence diagram) in a beam is a curve drawn on the beam where the ordinate at a point gives the magnitude of the influence in a specified section when a unit load reaches that point.

The influence in a specified section may be the shearing force , the bending moment , the deflectionetc.

Consider this beam:





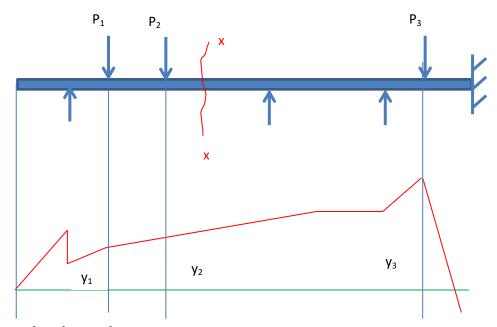
لنفرض أن هذا الخط البياني يمثل قيم قوق القص عند المقطع س-س فنقرأه بالشكل التالي أن قيمة قوة القص في هذا المقطع تساوي 1.5 حينما يكون الحمل الذي يساوي 1 عند النقطة 2 وهكذا يكون الحمل على الجسريقيمة 1 عند النقطة 1 وتكون قيمة قوة القص 3.5 في هذا المقطع حينما يكون الحمل الذي يساوي 1 عند النقطة 2 وهكذا

A unit load is used for all influence lines. When a load P moves on a beam ,the magnitude of the influence at a specified section will be P.y. This is because the magnitude of the influence at section x-x is directly proportional to the load.

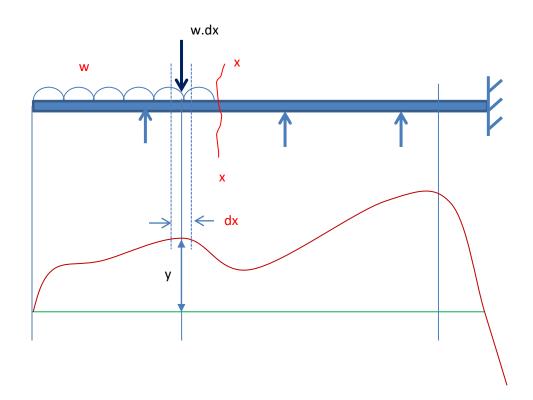
Several concentrated loads:

Use the principle of superposition , the total magnitude of the influence at section x-x will be ,

$$I = P_1. y_1 + P_2. y_2 + P_3. y_3 + \cdots \dots \dots \dots \dots$$



<u>Uniform load on a beam</u>



Divide the uniform load into infinite number of small loads{ w.dx at position x}. The magnitude of the influence at section x-x due to (w.dx) will be :

$$dI = y.(w.dx)$$

Summing,

$$I = \sum_{0}^{\infty} dI = \int dI = \int y. (w. dx)$$
$$= w \int y. dx = w [Area under the uniform load]$$

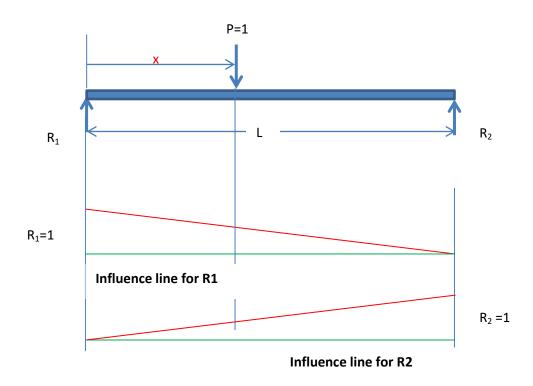
Influence line (I.L.)for reactions in simply supported beams

(1) Only simply supported beams.

Let the unit load P=1 be at distance x from R1. Then

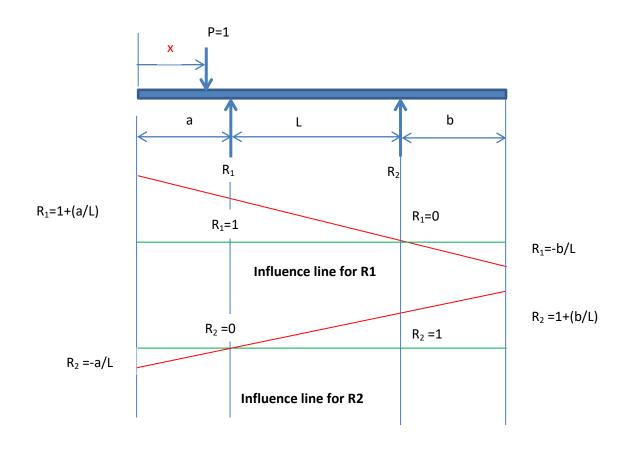
$$R_1 = \frac{P.(L-x)}{L} = 1 - \frac{x}{L}$$

$$R_2 = \frac{P.x}{L} = \frac{x}{L}$$



(2) Simply supported beam with overhangs

Let the unit load P=1 be at distance x from left end . Then

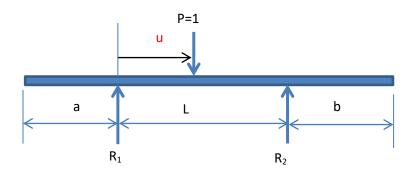


$$R_1 = \frac{P.(L + a - x)}{L} = \mathbf{1} + \frac{a}{L} - \frac{x}{L}$$

$$R_2 = \frac{-P.(a-x)}{L} = -\frac{a}{L} + \frac{x}{L}$$

This is for $0 \le x \le a$

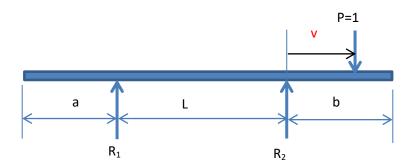
Now let the unit load P=1 be at distance u from R1 where $0 \le u \le L$, then,



$$R_1 = \frac{P.(L-u)}{L} = \mathbf{1} - \frac{\mathbf{u}}{L}$$

$$R_2 = \frac{P.u}{L} = \frac{u}{L}$$

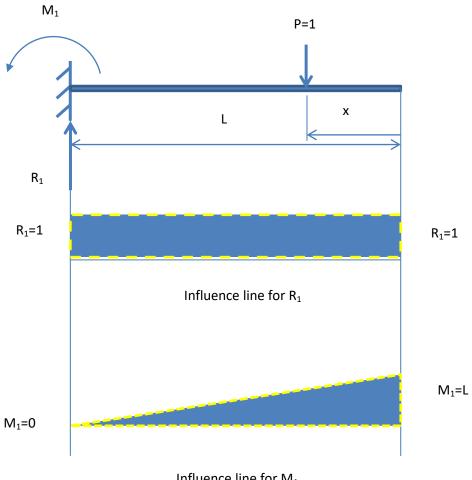
Finally let the unit load P=1 be at distance v from R2 where $0 \le v \le b$



$$R_1 = \frac{-Pv}{L} = -\frac{v}{L}$$

$$R_2 = \frac{P.(L+v)}{L} = \mathbf{1} + \frac{v}{L}$$

(3) Influence lines for reactions in a cantilever

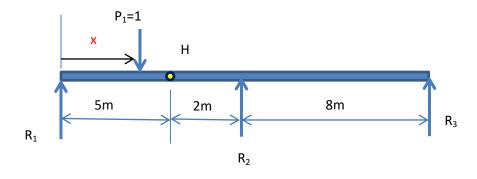


Influence line for M₁

(3) Influence lines for reactions in hinged beams

Draw I.Ls. for all reactions:

$$R_1+R_2+R_3=1$$



Solution:

First let a unit load $P_1=1$ be at distance x_1 from R1, where $0 \le x_1 \le 5$ m.Then,

B.M._H=0

$$R_1 x 5 - P_1 (5 - x_1) = 0$$

$$R_1 = 1 - \frac{x_1}{5}$$

To find R_2 , use $\sum M = 0$ about R_3 ,

$$R_2x8 + R_1x15 - P_1(15 - x_1) = 0$$

$$R_2 x 8 + (\frac{5 - x_1}{5}) x 15 - (15 - x_1) = 0$$

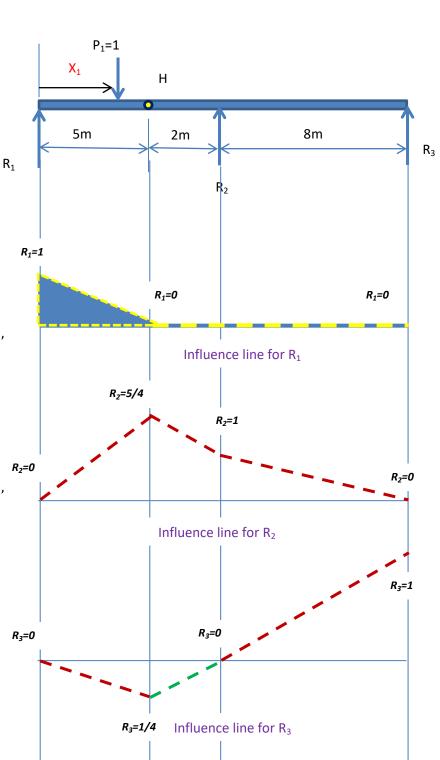
$$R_2=\frac{x_1}{4}$$

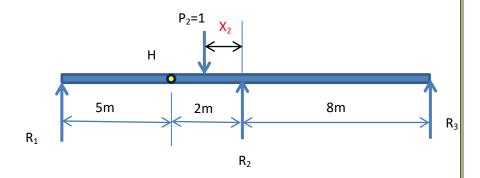
To find R_3 , use $\sum M = 0$ about R_1 ,

$$R_3x15 + R_2x7 - P_1(x_1) = 0$$

$$15R_3 + \frac{x_1}{4}x7 - x_1 = 0$$

$$R_3=-\frac{x_1}{20}$$





Next ,let P_2 be at x_2 from R_2 where $0 \le x_2 \le 2m$.Then

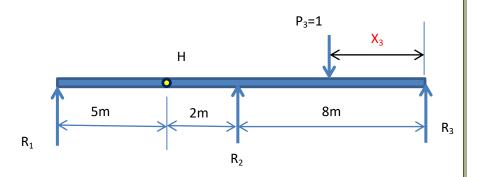
 $R_1x5=0$ [B.M.=0 at H] $R_1=0$

$$R_2x8 + R_1x15 - P_2(x_2 + 8) = 0....R_2 = \frac{x_2}{8} + 1$$

To find R_3 , use $\sum M = 0$ about R_2 ,

$$R_3x8 - R_1x7 + P_2(x_2) = 0$$
.... $R_3 = -\frac{x_2}{8}$

Finally ,let P_3 be at x_3 from R_3 where $0 \le x_3 \le 8$ m. Then



 $R_1x5=0$ [B.M.=0 at H] $R_1=0$

$$R_2 = \frac{x_3}{8}$$
 , $[\sum M = 0 \ at \ R_3]$

$$R_3 = 1 - \frac{x_3}{8}$$
 , $[\sum M = 0 \ at \ R_2]$