## Theory of Structure

Lec. 3 Analysis of Statically Determinate Structures

- Analysis of Statically Determinate Structures
- Idealized Structure To develop the ability to model or idealize a structure so that the structural engineer can perform a practical force analysis of the members


## Support Connections

- Pin connection (allows some freedom for slight rotation)
- Roller support (allows some freedom for slight rotation)
- Fixed joint (allows no relative rotation)



- Consider the jib crane \& trolley shown in Figure below, we neglect the thickness of the 2 main members \& will assume that the joint at $B$ is fabricated to be rigid
- The support at A can be modeled as a fixed support

- Consider the framing used to support a typical floor slab in a building shown below.
- The slab is supported by floor joists located at even intervals
- These are in turn supported by 2 side girders AB \& CD

- For analysis, it is reasonable to assume that the joints are pin and/or roller connected to girders \& the girders are pin and/or roller connected to columns

- Tributary Loadings
- There are two ways in which the load on surfaces can transmit to various structural elements
- one-way system
- two-way system


## One-wav svstem



Tow-way system

(a)

(b)
$1.5 \times 4.8=7.2 \mathrm{kN} / \mathrm{m}$

idealized beam
(c)

- ex1:-The floor of a classroom is supported by the bar joists. Each joist is 4.5 m long and they are spaced 0.75 m on centers. The floor is made from lightweight concrete that is 100 mm thick. Neglect the weight of joists \& the corrugated metal deck, determine the load that acts along each joist.



## Solution

Dead load, weight of concrete slab $=(100)(0.015)$
$=1.50 \mathrm{kN} / \mathrm{m}^{2}$
Live load $=1.92 \mathrm{kN} / \mathrm{m}^{2}$
Total load $=1.50+1.92=3.42 \mathrm{kN} / \mathrm{m}^{2}$
$L_{1}=0.75 \mathrm{~m}, L_{2}=4.5 \mathrm{~m}$
$L_{1} / L_{2}>2 \Rightarrow 1$ - way slab
Uniform load along its length, $w$
$=3.42 \mathrm{kN} / \mathrm{m}^{2}(0.75 \mathrm{~m})=2.57 \mathrm{kN} / \mathrm{m}$

(b)

(c)
5.78 kN

- Application of the Equations of Equilibrium
- The structure below subjecting to loads P1 \& P2, there are 9 unknowns in total 9 eqns. of equilibrium can be written, 3 for each member.
- It is statically determinate

- ex2:-Determine the reactions on the beam as shown.

- ex3:-The compound beam in Figure (a) below is fixed at A. Determine the reactions at A, B \& C. Assume the connections at $B$ is a pin \& $C$ a roller.



## Solution

Segment BC:
With anti-clockwise in the + direction,
$\sum M_{c}=0 ;-8+B_{y}(4.5)=0 \Rightarrow B_{y}=1.78 \mathrm{kN}$
$+\uparrow \Sigma F_{y}=0 ;-1.78+C_{y}=0 \Rightarrow C_{y}$
$\pm \sum F_{x}=0 ; B_{x}=0$
Segment AB:
With anti - clockwise in the + dires

$\sum M_{A}=0 ; M_{A}-36(3)+(1.78)(6)=0 \Rightarrow M_{A}=97.3 \mathrm{kN} . \mathrm{m}$
$+\uparrow \Sigma F_{y}=0 ; A_{y}-36+1.78=0 \Rightarrow A_{y}=34.2 k N$
$\pm \sum F_{x}=0 ; A_{x}=0$

- ex4:Determine the horizontal and vertical components of reaction at the pins $A, B$, and $C$ of the two-member frame shown in Fig.


- Equations of Equilibrium: Applying the six equations of equilibrium in the following sequence allows a direct solution for each of the six unknowns.
- Member BC:

$$
\begin{equation*}
\downarrow+\sum M_{C}=0 ; \quad-B_{y}(2)+6(1)=0 \quad B_{y}=3 \mathrm{kN} \tag{Ans.}
\end{equation*}
$$

Member $A B$ :

$$
\begin{array}{llll}
\downarrow+\Sigma M_{A}=0 ; & -8(2)-3(2)+B_{x}(1.5)=0 & B_{x}=14.7 \mathrm{kN} & \text { Ans. } \\
\xrightarrow{+} \Sigma F_{x}=0 ; & A_{x}+\frac{3}{5}(8)-14.7=0 & A_{x}=9.87 \mathrm{kN} & \text { Ans. }
\end{array}
$$

$$
+\uparrow \Sigma F_{y}=0 ; \quad A_{y}-\frac{4}{5}(8)-3=0 \quad A_{y}=9.40 \mathrm{kN} \quad \text { Ans }
$$

Member $B C$ :

$$
\begin{array}{llll}
\xrightarrow{\rightarrow} \Sigma F_{x}=0 ; & 14.7-C_{x}=0 & C_{x}=14.7 \mathrm{kN} & \text { Ans. } \\
+\uparrow \Sigma F_{y}=0 ; & 3-6+C_{y}=0 & C_{y}=3 \mathrm{kN} & \text { Ans. }
\end{array}
$$

H.W: solve the problems

F2-7, F2-10, 2-19, 2-20, 2-35

