_ecture 6: The Derivative as a Rate of Change
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Review

DEFINITION  Average Rate of Change over an Interval

The average rate of change of y = f(x) with respect to x over the mterval [x;, x,] 1s
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FIGURE 2.1 A secant to the graph
y = f(x).Its slope is Ay/Ax, the
average rate of change of f over the
interval [x;, x3].



EXAMPLE 3  The Average Growth Rate of a Laboratory Population

Figure 2.2 shows how a population of fruit flies (Drosophila) grew 1n a 50-day experi-
ment. The number of flies was counted at regular intervals, the counted values plotted with
respect to time, and the points joined by a smooth curve (colored blue 1n Figure 2.2). Find

the average growth rate from day 23 to day 45.
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FIGURE 2.2 Growth of a fruit fly population in a controlled
experiment. The average rate of change over 22 days 1s the slope
Ap/ At of the secant line.






The Derivative as a Rate of Change

Instantaneous Rates of Change

If we interpret the difference quotient (f(x + /) — f(x))/h as the average rate of change
in f over the mterval from x to x + 4, we can nterpret its limit as 2 — 0 as the rate at

which f 1s changing at the point x.

DEFINITION Instantaneous Rate of Change
The instantaneous rate of change of f with respect to x at x( 1s the dervative
flxo + 1) — flxo)

f'(xo) = I}E}I}) h ’

provided the limit exists.







The Derivative as a Rate of Change

EXAMPLE 1 How a Circle’s Area Changes with Its Diameter

The area A4 of a circle 1s related to 1ts diameter by the equation
_ T 2
A= 4 D~

How fast does the area change with respect to the diameter when the diameter 1s 10 m?



The Derivative as a Rate of Change

Position at time 7 ... and at time t + Af
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FIGURE 3.12 The positions of a body
moving along a coordinate line at time ¢

and shortly later at time 7 + Af.

displacement A
travel time ~ Af
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and the average velocity of the object over that time interval 1s

f(t + At) — f(1)

At

DEFINITION Velocity

Velocity (instantaneous velocity) 1s the derivative of position with respect to
tume. If a body’s position at time 71s s = f(7), then the body’s velocity at tume 7 1s
ds _ ft + A1) — f(2)

o) = G = Jim, Sy




EXAMPLE 2  Finding the Velocity of a Race Car

Figure 3.13 shows the time-to-distance graph of a 1996 Riley & Scott Mk III-Olds WSC
race car. The slope of the secant PO 1s the average velocity for the 3-sec interval from
t = 2tot = 5 sec; in this case, it is about 100 ft/sec or 68 mph.

The slope of the tangent at P is the speedometer reading at f = 2 sec, about 57 ft/sec
or 39 mph. The acceleration for the period shown is a nearly constant 28.5 ft/sec’ during



800

700 |

600

500

400

Distance (ft)

300
200

100

FIGURE

Example 2. The slope of the tangent line at P is the

Secant slope 1s
average velocity

for mterval from Q
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3.13 The time-to-distance graph for

instantaneous velocity at f = 2 sec.
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FIGURE 3.14 Formotions = f(t) along a straight line, v = ds/dt 1s
positive when s increases and negative when s decreases.
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Example 3
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FIGURE 3.15

The velocity graph for Example 3.
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DEFINITIONS Acceleration,

Acceleration 1s the derivative of velocity with respect to time. If a body’s posi-
tion at time 71s s = f(f), then the body’s acceleration at time ¢ 1s

dv _ s
da  dt*
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EXAMPLE 4 Modeling Free Fall

Figure 3.16 shows the free fall of a heavy ball bearing released from rest at time 7 = 0 sec.

(a) How many meters does the ball fall in the first 2 sec? ffsg““‘;ds} ° s (”:“‘ffﬁ)
f = _

(b) What 1s 1ts velocity, speed, and acceleration then? R
t=1 k5
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FIGURE 3.16 A ball bearing
falling from rest (Example 4).
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EXAMPLE 5  Modeling Vertical Motion

A dynamite blast blows a heavy rock straight up with a launch velocity of 160 ft/sec
(about 109 mph) (Figure 3.17a). It reaches a height of s = 160t — 16~ ft after 7 sec.

(a) How high does the rock go? A

(b) What are the velocity and speed of the rock when it 1s 256 ft above the ground on the Smax [~ v=0
way up? On the way down? r

(c) What 1s the acceleration of the rock at any time 7 during 1ts flight (after the blast)? A

(d) When does the rock hit the ground again?
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400 s = 1607 — 1612
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FIGURE 3.17 (a) The rock in Example 5.
(b) The graphs of s and v as functions of
time; s is largest when v = ds/df = 0. The
graph of s is not the path of the rock: Itis a
plot of height versus time. The slope of the
plot is the rock’s velocity, graphed here as
a straight line.
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EXAMPLE 15 Dropping Emergency Supplies

A Red Cross aircraft 1s dropping emergency food and medical supplies into a disaster area.
If the aircraft releases the supplies immediately above the edge of an open field 700 ft long
and 1f the cargo moves along the path

x=120t and y= —16t+ 500, t=0

does the cargo land 1n the field? The coordinates x and y are measured n feet, and the pa-
rameter 7 (time since release) 1 seconds. Find a Cartesian equation for the path of the
falling cargo (Figure 3.32) and the cargo’s rate of descent relative to its forward motion
when 1t hits the ground.
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Related Rates Equations

Suppose we are pumping air into a spherical balloon. Both the volume and radius of the
balloon are increasing over time. If 7 1s the volume and 7 1s the radius of the balloon at an
mstant of time, then

_4 3
V—3‘1T?".

Using the Chain Rule, we differentiate to find the related rates equation

dv _dvdr _
dt — drdt

2 dr

dt
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EXAMPLE 2 A Rising Balloon

A hot air balloon rising straight up from a level field 1s tracked by a range finder 500 ft
from the liftoff point. At the moment the range finder’s elevation angle 1s 77/4, the angle 1s
increasing at the rate of 0.14 rad/min. How fast 1s the balloon rising at that moment?
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End of this lecture

Any Questions ?




