

REPUBLIC OF IRAQ MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH AL-FURAT AL-AWSAT TECHNICAL UNIVERSITY ENGINEERING TECHNICAL COLLEGE- NAJAF AVIONIC TECHNIQUES ENGINEERING DEPARTMENT

ANALOG AND DIGITAL COMMUNICATION SYSTEMS For 3rd Class Students

Assistant lecturer

Amjed Adnan Al-mudaffer

Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

Fourier Series

Theory

A graph of periodic function f(x) that has period L exhibits the same pattern every L units along the x-axis, so that f(x + L) = f(x) for every value of x. If we know what the function looks like over one complete period, we can thus sketch a graph of the function over a wider interval of x (that may contain many periods).

The Fourier Series of periodic function f(t) is a representation that resolve f(t) into average component (DC) and alternative component (AC) comprising infinite series and harmonic

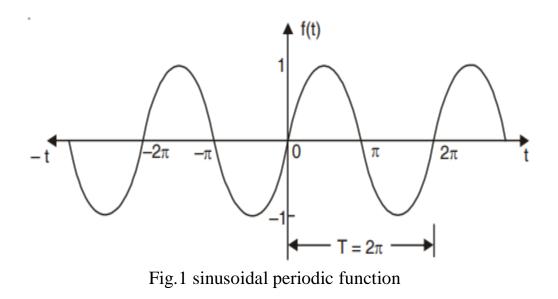
Periodic Functions

If the value of each ordinate f(t) repeats itself at equal intervals in the abscissa, then f(t) is said to be a periodic function

If $f(t) = f(t + T) = f(t + 2T) = \dots f(t + nT)$ then **T** is called the period of the function f(t).

For example : .

 $\sin x = \sin(x + 2\pi) = \sin(x + 4\pi) = ...$ so $\sin x$ is a periodic function with the period 2π . This is also called sinusoidal periodic function.



Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

Fourier Series

Here we will express a non-sinusoidal periodic function into a fundamental and its harmonics. A series of sines and cosines of an angle and its multiples of the form.

 $f(t) = \frac{a_0}{2} + a_1 \cos(x) + a_2 \cos(2x) + a_3 \cos(3x) + \dots + b_1 \sin(x) + b_2 \sin(2x) + b_3 \sin(3x) + \dots$

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

- The cos(nx) or sin(nx) is called n^{th} harmonic of f(x).
- a_0 is average (DC) component, average value f(x).
- a_n and b_n are the Fourier coefficient.
- *n* = 1,2,3,4,5,6,

USEFUL INTEGRALS

The following integrals are useful in Fourier Series.

(i)
$$\int_{0}^{2\pi} \sin nx \, dx = 0$$

(ii) $\int_{0}^{2\pi} \cos nx \, dx = 0$
(iii) $\int_{0}^{2\pi} \sin^2 nx \, dx = \pi$
(iv) $\int_{0}^{2\pi} \cos^2 nx \, dx = \pi$
(v) $\int_{0}^{2\pi} \sin nx \cdot \sin mx \, dx = 0$
(vi) $\int_{0}^{2\pi} \cos nx \cos mx \, dx = 0$
(vii) $\int_{0}^{2\pi} \sin nx \cdot \cos mx \, dx = 0$
(viii) $\int_{0}^{2\pi} \sin nx \cdot \cos nx \, dx = 0$

(*ix*)
$$\int uv \, dx = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots$$

where
$$v_1 = \int v \, dx$$
, $v_2 = \int v_1 \, dx$ and so on $u' = \frac{du}{dx}$, $u'' = \frac{d^2u}{dx^2}$ and so on and

(x) sin $n \pi = 0$, cos $n \pi = (-1)^n$ where $n \in I$

The following are some properties of these functions :

1)
$$Sin^{2}\theta + Cos^{2}\theta = 1$$

2) $1 + tan^{2}\theta = sec^{2}\theta$ and $1 + Cot^{2}\theta = csc^{2}\theta$
3) $Sin(\theta \mp \beta) = Sin\theta.Cos\beta \mp Cos\theta.Sin\beta$
4) $Cos(\theta \mp \beta) = Cos\theta.Cos\beta \pm Sin\theta.Sin\beta$
5) $tan(\theta \mp \beta) = \frac{tan\theta \mp tan\beta}{1 \pm tan\theta.tan\beta}$
6) $Sin2\theta = 2Sin\theta.Cos\theta$ and $Cos2\theta = Cos^{2}\theta - Sin^{2}\theta$
7) $Cos^{2}\theta = \frac{1 + Cos2\theta}{2}$ and $Sin^{2}\theta = \frac{1 - Cos2\theta}{2}$
8) $Sin(\theta \mp \frac{\pi}{2}) = \mp Cos\theta$ and $Cos(\theta \mp \frac{\pi}{2}) = \pm Sin\theta$
9) $Sin(-\theta) = -Sin\theta$ and $Cos(-\theta) = Cos\theta$ and $tan(-\theta) = -tan\theta$
10) $Sin\theta.Sin\beta = \frac{1}{2}[Cos(\theta - \beta) - Cos(\theta + \beta)]$
 $Cos\theta.Cos\beta = \frac{1}{2}[Cos(\theta - \beta) + Sin(\theta + \beta)]$

Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

$\cos(2n\pi) = 1$	$\sin(2n\pi)=0$
$\sin(n\pi) = 0$	$\cos(n\pi) = (-1)^n$
$\sin\left(\frac{n\pi}{2}\right) = \begin{cases} (-1)^{\frac{n-1}{2}} , n = odd \\ 0 , n = even \end{cases}$	$\cos\left(\frac{n\pi}{2}\right) = \begin{cases} (-1)^{\frac{n}{2}} , n = even \\ 0 , n = odd \end{cases}$
$e^{\pm jx} = \cos x \pm j \sin x$	$e^{j2n\pi}=1$

We need to work out the Fourier coefficients $(a_0, a_n \text{ and } b_n)$ for given functions f(x). This process is broken down into three steps

STEP ONE

Find a_0 integrate both sides from x = 0 to $x = 2\pi$

$$\int_{0}^{2\pi} f(x) \, dx = \int_{0}^{2\pi} \frac{a_0}{2} \, dx + \sum_{n=1}^{\infty} a_n \int_{0}^{2\pi} \cos(nx) \, dx + \sum_{n=1}^{\infty} b_n \int_{0}^{2\pi} \sin(nx) \, dx$$
$$\int_{0}^{2\pi} f(x) \, dx = \frac{a_0}{2} [2\pi - 0]$$
$$a_0 = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \, dx$$

STEP TWO

Find a_n Multiply each side by cos(nx) and integrate both sides from x = 0 to $x = 2\pi$

$$\int_{0}^{2\pi} f(x) \cos(nx) \, dx = \int_{0}^{2\pi} \frac{a_0}{2} \cos(nx) \, dx + \sum_{n=1}^{\infty} a_n \int_{0}^{2\pi} \cos(nx) \cos(nx) \, dx + \sum_{n=1}^{\infty} b_n \int_{0}^{2\pi} \sin(nx) \cos(nx) \, dx$$
$$\int_{0}^{2\pi} f(x) \cos(nx) \, dx = 0 + a_n \pi + 0$$
$$a_n = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos(nx) \, dx$$

STEP THREE

Find b_n Multiply each side by sin(nx) and integrate both sides from x = 0 to $x = 2\pi$

$$\int_0^{2\pi} f(x)\sin(nx) \ dx = \int_0^{2\pi} \frac{a_0}{2}\sin(nx) \ dx + \sum_{n=1}^{\infty} a_n \int_0^{2\pi} \cos(nx)\sin(nx) \ dx + \sum_{n=1}^{\infty} b_n \int_0^{2\pi} \sin(nx)\sin(nx) \ dx$$

Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

$$\int_{0}^{2\pi} f(x) \sin(nx) \, dx = 0 + 0 + b_n \pi$$
$$b_n = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin(nx) \, dx$$

Example . Find the Fourier series representing
$$f(x) = x$$
 $0 < x < 2\pi$

and sketch its graph from $x = -4\pi$ to $x = 4\pi$

Solution

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + \sum_{n=1}^{\infty} b_n \sin(nx)$$

Hence

$$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) dx = \frac{1}{\pi} \int_{0}^{2\pi} x \, dx = \frac{1}{\pi} \left[\frac{x^{2}}{2} \right]_{0}^{2\pi} = 2\pi$$

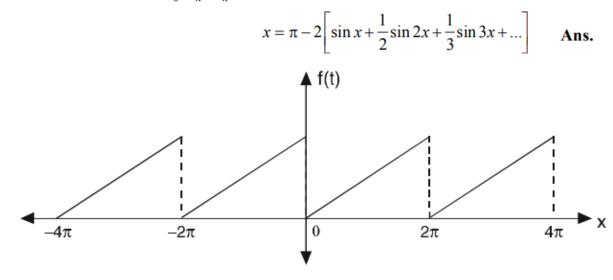
$$a_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \cos nx \, dx = \frac{1}{\pi} \int_{0}^{2\pi} x \cos nx \, dx$$

$$= \frac{1}{\pi} \left[x \frac{\sin nx}{n} - 1 \cdot \left(-\frac{\cos nx}{n^{2}} \right) \right]_{0}^{2\pi} = \frac{1}{\pi} \left[\frac{\cos 2n\pi}{n^{2}} - \frac{1}{n^{2}} \right] = \frac{1}{n^{2}\pi} (1-1) = 0$$

$$b_{n} = \frac{1}{\pi} \int_{0}^{2\pi} f(x) \sin nx \, dx = \frac{1}{\pi} \int_{0}^{2\pi} x \sin nx \, dx$$

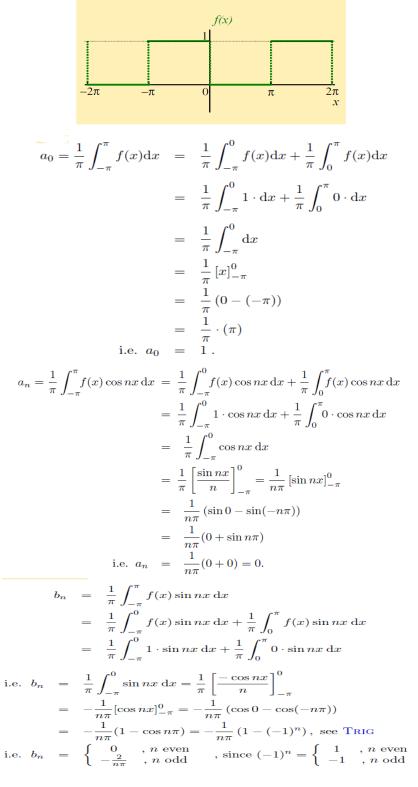
$$= \frac{1}{\pi} \left[x \left(-\frac{\cos nx}{n} \right) - 1 \cdot \left(-\frac{\sin nx}{n^{2}} \right) \right]_{0}^{2\pi} = \frac{1}{\pi} \left[\frac{-2\pi \cos 2n\pi}{n} \right] = -\frac{2}{n}$$
here where of π , π , h in (1) are set

Substituting the values of a_0, a_n, b_n in (1), we get



Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

Example . Find the Fourier series representing



Substituting our results now gives the required series

$$f(x) = \frac{1}{2} - \frac{2}{\pi} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

Example ... Find the Fourier series of the function $\begin{bmatrix} -1 & for & -\pi < x < -\frac{\pi}{2} \end{bmatrix}$ $f(x) = \begin{vmatrix} 0 & \text{for } -\frac{\pi}{2} < x < \frac{\pi}{2} \\ +1 & \text{for } -\frac{\pi}{2} < x < \pi \end{vmatrix}$ $f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + \dots + b_1 \sin x + b_2 \sin 2x + \dots$ Solution. Let ...(1) $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{-\pi/2} (-1) dx + \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} 0 dx + \frac{1}{\pi} \int_{-\pi/2}^{\pi} 1 dx$ $=\frac{1}{\pi}\left[-x\right]_{-\pi}^{-\pi/2}+\frac{1}{\pi}\left[x\right]_{\pi/2}^{\pi}=\frac{1}{\pi}\left|\frac{\pi}{2}-\pi-\frac{\pi}{2}\right|=0$ $a_n = \frac{1}{-1} \int_{-\pi}^{+\pi} f(x) \cos nx \, dx$ $=\frac{1}{\pi}\int_{-\pi}^{-\pi/2}(-1)\cos nx\,dx+\frac{1}{\pi}\int_{-\pi/2}^{\pi/2}(0)\cos nx\,dx+\frac{1}{\pi}\int_{-\pi/2}^{\pi}(1)\cos nx\,dx$ $= -\frac{1}{\pi} \left[\frac{\sin nx}{n} \right]_{-\pi}^{-\pi/2} + \frac{1}{\pi} \left[\frac{\sin nx}{n} \right]_{\pi/2}^{\pi} = -\frac{1}{\pi} \left| -\frac{\sin \frac{n\pi}{2}}{n} + \frac{\sin n\pi}{n} \right| + \frac{1}{\pi} \left| \frac{\sin n\pi}{n} - \frac{\sin \frac{n\pi}{2}}{n} \right| = 0$ $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$ $= \frac{1}{\pi} \int_{-\pi}^{-\pi/2} (-1) \sin nx \, dx + \frac{1}{\pi} \int_{-\pi/2}^{\pi/2} (0) \sin nx \, dx$ $+\frac{1}{\pi}\int_{\pi/2}^{\pi}(1)\sin nx\,dx$ $=\pi\left[\frac{\cos nx}{n}\right]^{-\pi/2}-\frac{1}{\pi}\left[\frac{\cos nx}{n}\right]^{\pi}$ $=\frac{1}{n\pi}\left[\cos\frac{n\pi}{2}-\cos n\pi\right]-\frac{1}{n\pi}\left(\cos n\pi-\cos\frac{n\pi}{2}\right)=\frac{2}{n\pi}\left[\cos\frac{n\pi}{2}-\cos n\pi\right]$ $b_1 = \frac{2}{\pi}, \qquad b_2 = -\frac{2}{\pi}, \qquad b_3 = \frac{2}{3\pi}$ Putting the values of $a_0, a_n, b_n \text{ in } (1)$ we get $f(x) = \frac{1}{\pi} \left| 2\sin x - 2\sin 2x + \frac{2}{3}\sin 3x + \dots \right|$

Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

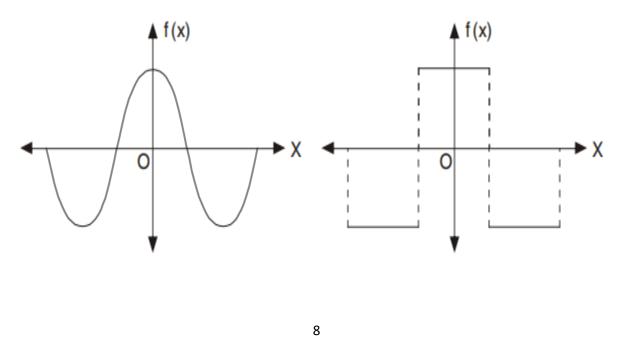
Example 4. Find the Fourier series for the periodic function $f(x) = \begin{bmatrix} 0, & -\pi < x < 0 \\ x, & 0 < x < \pi \end{bmatrix}$ $f(x + 2\pi) = f(x)$ Solution. Let $f(x) = \frac{a_0}{2} + a_1 \cos x + a_0 \cos 2x + \dots + v_1 \sin x + b_2 \sin 2x + \dots$ $a_0 = \frac{1}{\pi} \int_{-\pi}^0 0.dx + \frac{1}{\pi} \int_0^{\pi} x \, dx = \frac{1}{\pi} \left[\frac{x^2}{2} \right]_0^{\pi} = \frac{1}{\pi} \left(\frac{\pi^2}{2} \right) = \frac{\pi}{2}$ $a_n = \frac{1}{\pi} \int_0^{\pi} x \cos nx \, dx = \frac{1}{\pi} \left[x \cdot \frac{\sin nx}{n} - (1) \left(-\frac{\cos nx}{n^2} \right) \right]_0^{\pi} = \frac{1}{\pi} \left(\frac{\cos n\pi}{n^2} \right)_0^{\pi}$ $= \frac{1}{\pi} \left[\frac{(-1)^n}{n^2} - \frac{1}{n^2} \right] = -\frac{2}{n^2 \pi} \text{ when } n \text{ is odd}$ = 0, when n is even. $b_n = \frac{1}{\pi} \int_0^{\pi} x \sin nx \, dx = \frac{1}{\pi} \left[x \left(-\frac{\cos nx}{n} \right) - (1) \left(-\frac{\sin nx}{n^2} \right) \right]_0^{\pi} = \frac{1}{\pi} \left[-\pi \frac{(-1)^n}{n} \right] = \frac{(-1)^{n+1}}{n}$ Substituting the values of $a_0, a_1, a_2 \dots b_1, b_2, \dots$ in (1), we get $f(x) = \frac{\pi}{4} - \frac{2}{\pi} \left[\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} \dots \right] + \left[\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \dots \right]$ Ans.

Symmetry Consideration

(a) Even Function

A function f (x) is said to be even (or symmetric) function if, f(-x) = f(x)

The graph of such a function is symmetric with respect to y-axis [f(x) axis]. Here y-axis is a mirror for the reflection of the curve.



Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

Expansion of an Even Function:

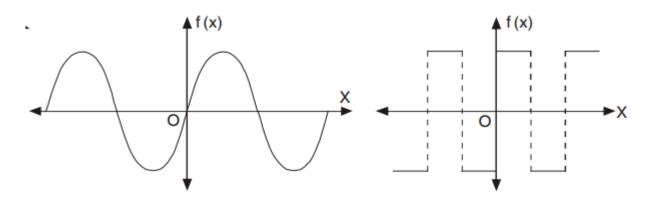
$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \, dx$$
$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos(nx) \, dx$$
$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx = 0$$

- As f(x) and cos(nx) are both even functions.
- * The product of f(x). cos(nx) is also an even function.
- \Leftrightarrow sin(nx) is an odd function.
- \clubsuit The series of the even function will contain only cosine terms.

(b)Odd Function

A function f(x) is called odd (or skew symmetric) function if

$$f(-x) = -f(x)$$



Expansion of an Odd Function:

$$a_{0} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \, dx = 0$$
$$a_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, dx = 0$$
$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin(nx) \, dx$$

Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

Example . Find the Fourier series expansion of the periodic function of period 2π

$$f(x) = x^2, \ -\pi \le x \le \pi$$

Solution.

$$f(x) = x^2, \ -\pi \le x \le \pi$$

This is an even function. $\therefore \qquad b_n = 0$

$$a_{0} = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} x^{2} dx = \frac{2}{\pi} \left[\frac{x^{3}}{3} \right]_{0}^{\pi} = \frac{2\pi^{2}}{3}$$

$$a_{n} = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos nx \, dx$$

$$= \frac{2}{\pi} \left[x^{2} \left(\frac{\sin nx}{n} \right) - (2x) \left(-\frac{\cos nx}{n^{2}} \right) + (2) \left(-\frac{\sin nx}{n^{3}} \right) \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[\frac{\pi^{2} \sin n\pi}{n} + \frac{2\pi \cos n\pi}{n^{2}} - \frac{2\sin n\pi}{n^{3}} \right] = \frac{4(-1)^{n}}{n^{2}}$$

Fourier series is

$$f(x) = \frac{a_0}{2} + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \dots + a_n \cos nx + \dots$$

$$x^{2} = \frac{\pi^{2}}{3} - 4\left[\frac{\cos x}{1^{2}} - \frac{\cos 2x}{2^{2}} + \frac{\cos 3x}{3^{3}} - \frac{\cos 4x}{4^{2}} + \dots\right]$$

Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

Example . Obtain a Fourier expression for

$$f(x) = x^3$$
 for $-\pi < x < \pi$.

Solution. $f(x) = x^3$ is an odd function.

...

$$\therefore \qquad a_0 = 0 \text{ and } a_n = 0$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx = \frac{2}{\pi} \int_0^{\pi} x^3 \sin nx \, dx$$

$$\left[\int uv = uv_1 - u'v_2 + u''v_3 - u'''v_4 + \dots \right]$$

$$= \frac{2}{\pi} \left[x^3 \left(\frac{\cos nx}{n} \right) - 3x^2 \left(-\frac{\sin nx}{n^2} \right) + 6x \left(\frac{\cos nx}{n^3} \right) - 6 \left(\frac{\sin nx}{n^4} \right) \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[-\frac{\pi^3 \cos n\pi}{n} + \frac{6\pi \cos n\pi}{n^3} \right] = 2 \cdot (-1)^n \left[-\frac{\pi^2}{n} + \frac{6}{n^3} \right]$$

$$x^3 = 2 \left[-\left(\frac{\pi^2}{1} + \frac{6}{1^3} \right) \sin x + \left(-\frac{\pi^2}{2} + \frac{6}{2^3} \right) \sin 2x - \left(-\frac{\pi^2}{3} + \frac{6}{3^3} \right) \sin 3x \dots \right]$$
Ans.

Exercise:- Find the Fourier series of wave form f(x) with period 2π

Let f(x) be a function of period 2π such that

$$f(x) = \begin{cases} x, & 0 < x < \pi \\ \pi, & \pi < x < 2\pi \end{cases}$$

B

C

Α

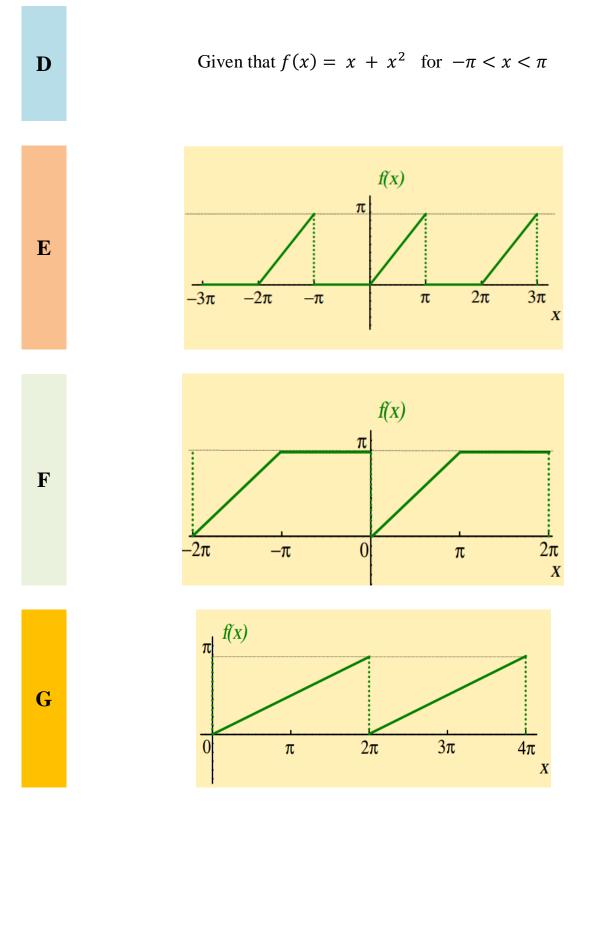
Let f(x) be a function of period 2π such that

$$f(x) = \frac{x}{2}$$
 over the interval $0 < x < 2\pi$.

Let f(x) be a function of period 2π such that

$$f(x) = \begin{cases} \pi - x, & 0 < x < \pi \\ 0, & \pi < x < 2\pi \end{cases}$$

Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan



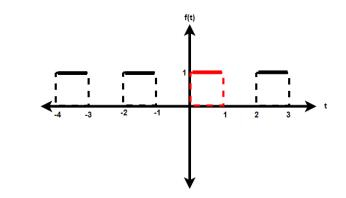
Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

Fourier series for a waveform f(t) with period T = $\frac{2\pi}{w_0}$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nw_o t) + \sum_{n=1}^{\infty} b_n \sin(nw_o t)$$
$$a_0 = \frac{2}{T} \int_0^T f(t) dt$$
$$a_n = \frac{2}{T} \int_0^T f(t) \cos(nw_o t) dt$$
$$b_n = \frac{2}{T} \int_0^T f(t) \sin(nw_o t) dt$$

 $w_o = \frac{2\pi}{T} = 2\pi f$ called fundamental frequency in radian per second

Example:-Determine the Fourier series of wave form show in figure below.



SOLUTION

$$f(t) = \begin{cases} 1 & 0 \le t \le 1\\ 0 & 1 \le t \le 2 \end{cases}$$

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nw_0 t) + \sum_{n=1}^{\infty} b_n \sin(nw_0 t)$$

$$a_0 = \frac{2}{T} \int_0^T f(t) \, dx$$

$$a_0 = \frac{2}{T} \left[\int_0^1 1 \, dt + \int_1^2 (0) \, dx \right]$$

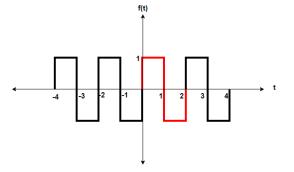
$$a_0 = [t]_0^1 = 1$$

Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

$$\begin{split} &a_{n} = \frac{2}{T} \int_{0}^{T} f(t) \cos(nw_{0}t) dt = \frac{2}{2} \Big[\int_{0}^{1} 1 \cos(nw_{0}t) dt + \int_{1}^{2} 0 \cos(nw_{0}t) dt \Big] \\ &a_{n} = \frac{\sin(nw_{0}t)]_{0}^{1}}{nw_{0}} = \frac{\sin\left(n\frac{2\pi}{T}t\right) \Big]_{0}^{1}}{n\frac{2\pi}{T}} = \frac{\sin\left(n\frac{2\pi}{2}t\right) \Big]_{0}^{1}}{n\frac{2\pi}{2}} = \frac{1}{n\pi} \sin(n\pi t) \Big]_{0}^{1} \\ &a_{n} = \frac{1}{n\pi} [\sin(n\pi) - \sin(0)] = 0 \\ &b_{n} = \frac{2}{T} \int_{0}^{T} f(t) \sin(nw_{0}t) dt = \frac{2}{2} \Big[\int_{0}^{1} 1 \sin(nw_{0}t) dt + \int_{1}^{2} 0 \sin(nw_{0}t) dt \Big] \\ &b_{n} = -\frac{\cos(nw_{0}t) \Big]_{0}^{1}}{nw_{0}} = -\frac{\cos\left(n\frac{2\pi}{T}t\right) \Big]_{0}^{1}}{n\frac{2\pi}{T}} = -\frac{\cos\left(n\frac{2\pi}{2}t\right) \Big]_{0}^{1}}{n\frac{2\pi}{2}} = -\frac{1}{n\pi} \cos(n\pi t) \Big]_{0}^{1} \\ &b_{n} = -\frac{1}{n\pi} [\cos(n\pi) - 1] = \frac{1}{n\pi} [1 - \cos(n\pi)] \\ &b_{n} = -\frac{1}{n\pi} [\cos(n\pi) - 1] = \frac{1}{n\pi} [1 - \cos(n\pi)] \\ &b_{n} = \frac{1}{n\pi} [1 - (-1)^{n}] = \begin{cases} \frac{1}{n\pi}, & n = odd \\ 0, & n = even \end{cases} \\ &f(t) = \frac{1}{2} + \sum_{n=1}^{\infty} 0 \cos(nw_{0}t) + \sum_{n=1}^{\infty} b_{n} \sin(n\pi t) \\ &f(t) = \frac{1}{2} + \frac{2}{\pi} \sin(\pi t) + \frac{2}{3\pi} \sin(3\pi t) + \frac{2}{5\pi} \sin(5\pi t) + \cdots \\ &f(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{2}{n\pi} \sin(n\pi t) \quad when \ n = 1,3,5,7 \ or \ n = 2k - 1 \quad k \ge 1 \end{split}$$

Exercise:-Determine the Fourier series of wave form show in figure below.

Α



Sub. : Analogy & Digital Comm. Sys. Lecturer : Amjed Adnan

