Name	HM	PM
Instantaneous Angular Frequency $\begin{aligned} & \mathbf{w}_{\mathbf{i}}(\mathbf{t}) \\ & \mathbf{f}_{\mathbf{i}}(\mathbf{t}) \end{aligned}$	$\begin{aligned} & w_{i}(t)=w_{c}+k_{f} m(t) \\ & f_{i}(t)=f_{c}+\frac{\mathbf{k}_{f}}{2 \pi} m(t) \end{aligned}$	$\begin{aligned} \mathbf{w}_{\mathbf{i}}(t)=\frac{d \theta}{d t} & =\mathbf{w}_{\mathbf{c}} \\ & +k_{p} \mathbf{m}(t) \end{aligned}$
Main Equation φ	$\varphi_{F M}(t)=A \cos \left(w_{c} t+k_{f} \int_{-\infty}^{t} m(\propto) d \propto\right)$	$\varphi_{P M}(t)=A \cos \left(w_{c} t+k_{p} m(t)\right)$
Frequency Deviation Δf	$\begin{aligned} & \Delta f=\boldsymbol{k}_{\boldsymbol{f}} \frac{\mathbf{m}_{\mathbf{p}}}{\mathbf{2 \pi}} \\ & \Delta W=\boldsymbol{k}_{\boldsymbol{f}} \mathbf{m}_{\mathrm{p}} \end{aligned}$	$\begin{aligned} & \Delta f=k_{p} \frac{\dot{\mathbf{m}}_{\mathbf{p}}}{2 \pi} \\ & \Delta W=k_{p} \dot{\mathbf{m}}_{\mathrm{p}} \end{aligned}$
Deviation Ratio(Modulation Index) $\boldsymbol{\beta}$	$\boldsymbol{\beta}=$	
Bandwidth NBFM/NBPM	$N B F M=N B P M=B \cdot W=2 B$	
Bandwidth Carson's rule	$\begin{aligned} B_{F M} & \approx 2(\Delta f+B) H z \\ B_{F m} & \approx 2 B(\beta+1) \end{aligned}$	
Bandwidth	$B_{F m} \approx 2 \Delta$	Hz
Carrier Swing	$2 \Delta f$	

No. Examples

A signal tone FM signal is

$$
\varphi_{F M}(t)=10\left[\cos \left(2 \pi 10^{6} t+8 \sin 2 \pi 10^{3} t\right)\right.
$$

Determine

1. The carrier frequency f_{c}
2. Modulating frequency
3. The modulation index β
4. The peak frequency deviation Δf
5. The bandwidth of $\varphi_{F M}(t)$

What is the modulation index of an FM signal have a carrier swing of 100 KHz when the modulating signal has a frequency of 8 KHz
107.6 MHz carrier signal is frequency modulated 7 KHz since wave. The resultant FM signal has a frequency deviation of 50 KHz . determine the following
3 a- the carrier swing of the FM signal
b - the highest and lowest frequencies attained by the modulated c - the modulation index of the FM wave.
for the angle modulation signal
$X_{c}(t)=10 \cos \left[2 \pi 10^{6} t+10 \sin \left(2 \pi 10^{3} t\right)\right]$
find $m(t)$ if
1- X_{c} is a PM signal with $k_{p}=10$
2- X_{c} is a FM signal with $k_{F}=10 \pi$

Sketch FM and PM waves for the modulating signal $m(t)$ shown in figure below. The constants k_{f} and k_{p} are $2 \pi 10^{5}$ and 10π respectively, and the carrier frequency f_{c} is 100 MHz

(a) Estimate $B_{F M}$ and $B_{P M}$ for the modulating signal m(t) in Figure below for $k_{F}=2 \pi * 10^{5}$ and $k_{P}=5 \pi$. Assume the essential bandwidth of the periodic $m(t)$ as the frequency of its third harmonic.
$(b)^{* * *}$ Repeat the problem if the amplitude of $m(t)$ is doubled [if $m(t)$ is multiplied by 2].
6
***A signal $S(t)$ is measured and found to be described by $S(t)=A \cos \left(2 \pi f_{b} t+\propto \sin \left(2 \pi f_{a} t\right)\right)$
Let $S(t)$ let an angle modulation with k_{P} sensitivity what is the information signal $m(t)$?
If $S(t)$ now is $F M$ signal with k_{F} find $m(t)$ and $f_{i}(t)$
Design an Armstrong indirect FM modulator to generate an FM signal with carrier frequency 97.3 MHz and $\Delta f=10.24 \mathrm{kHz}$. A NBFM generator of $f_{c 1}=20 \mathrm{kHz}$ and $\Delta f=5 \mathrm{~Hz}$ is available. Only frequency
 doublers can be used as multipliers. Additionally, a local oscillator (LO) with adjustable frequency between 400 and 500 kHz is readily available for frequency mixing.

