2- Nonlinear Modulator (Single Balance Modulator)

Modulation can also be achieved by using nonlinear devices, such as a semiconductor diode or a transistor. Figure below shows one possible scheme, which uses two identical nonlinear elements (boxes marked NL).
Let the input-output characteristics of either of the nonlinear elements be approximated by a power series

$$
y(t)=a x(t)+b x^{2}(t)
$$

$x_{1}(t)=m(t)+\cos \left(w_{c} t\right)$
$x_{2}(t)=-m(t)+\cos \left(w_{c} t\right)$
$y_{1}(t)=a m(t)+\operatorname{acos}\left(w_{c} t\right)+b\left[m(t)+\cos \left(w_{c} t\right)\right]^{2}$
$y_{1}(t)=a m(t)+\operatorname{acos}\left(w_{c} t\right)+b m^{2}(t)+2 b m(t) \cos \left(w_{c} t\right)+b \cos ^{2}\left(w_{c} t\right)$
$y_{2}(t)=-a m(t)+\operatorname{acos}\left(w_{c} t\right)+b\left[-m(t)+\cos \left(w_{c} t\right)\right]^{2}$
$y_{2}(t)=-a m(t)+\operatorname{acos}\left(w_{c} t\right)+b m^{2}(t)-2 b m(t) \cos \left(w_{c} t\right)+b \cos ^{2}\left(w_{c} t\right)$
$z(t)=y_{1}(t)-y_{2}(t)$
$z(t)=2 a m(t)+4 b m(t) \cos \left(w_{c} t\right)$

After BPF at $\overline{+} w_{c}$

output $=4 b m(t) \cos \left(w_{c} t\right)$

3- Switch Modulator

The multiplication operation required for modulation can be replaced by a simpler switching operation if we realize that a modulated signal can be obtained by multiplying $\mathrm{m}(\mathrm{t})$ not only by a pure sinusoid but by any periodic signal $\phi(t)$ of the fundamental radian frequency w_{c}. Such a periodic signal can be expressed by a trigonometric Fourier series as

$$
\begin{aligned}
\phi(t) & =\sum_{n=0}^{\infty} C_{n} \cos \left(n w_{c} t+\theta_{n}\right) \\
\boldsymbol{m}(\boldsymbol{t}) \phi(\boldsymbol{t}) & =\sum_{\boldsymbol{n}=\mathbf{0}}^{\infty} \boldsymbol{m}(\boldsymbol{t}) \boldsymbol{C}_{\boldsymbol{n}} \cos \left(\boldsymbol{n} \boldsymbol{w}_{\boldsymbol{c}} \boldsymbol{t}+\boldsymbol{\theta}_{\boldsymbol{n}}\right)
\end{aligned}
$$

This shows that the spectrum of the product $m(t) \phi(t)$ is the spectrum $M(w)$ shifted to $\pm \mathrm{w}_{\mathrm{c}}, \pm 2 \mathrm{w}_{\mathrm{c}}, \ldots, \pm \mathrm{nw}_{\mathrm{c}}, \ldots$. If this signal is passed through a bandpass filter of bandwidth $2 \boldsymbol{f}_{\boldsymbol{m}} \mathrm{Hz}$ and tuned to We, then we get the desired modulated signal $\mathrm{m}(\mathrm{t}) \mathrm{C}_{1} \cos \left(\mathrm{w}_{\mathrm{c}} \mathrm{t}+\theta_{1}\right)$. The square pulse train $\mathrm{w}(\mathrm{t})$ in $\mathbf{F i g} . \mathrm{b}$ is a periodic signal whose Fourier series.
$w(t)=\frac{1}{2}+\frac{2}{\pi}\left[\cos \left(w_{c} t\right)-\frac{1}{3} \cos \left(3 w_{c} t\right)+\frac{1}{5} \cos \left(5 w_{c} t\right)-\cdots\right]$
The signal $m(t) w(t)$ is given by
$m(t) w(t)=\frac{1}{2} m(t)+\frac{2}{\pi}\left[m(t) \cos \left(w_{c} t\right)-\frac{1}{3} m(t) \cos \left(3 w_{c} t\right)+\frac{1}{5} m(t) \cos \left(5 w_{c} t\right)-\cdots\right]$
The signal $m(t) w(t)$ consists not only of the component $m(t)$ but also of an infinite number of modulated signals with carrier frequencies $w_{c}, 3 w_{c}, 5 w_{c}, \ldots, n w_{c}$. Therefore, the spectrum of $m(t) w(t)$ consists of multiple copies of the message spectrum $M(f)$, shifted to $0, \pm f_{c}, \pm 3 f_{c}, \pm 5 f_{c}, \ldots$ (with decreasing relative weights), as shown in Fig.c. For modulation, we are interested in extracting the modulated component $\boldsymbol{m}(\boldsymbol{t}) \boldsymbol{\operatorname { c o s }}\left(\boldsymbol{w}_{\boldsymbol{c}} \boldsymbol{t}\right)$ only. To separate this component from the rest of the crowd, we pass the signal $m(t) w(t)$ through a bandpass filter of bandwidth $2 f_{m} \mathrm{~Hz}$, centered at the frequency $\pm f_{c}$. Provided the carrier frequency $f_{c} \geq 2 f_{m}$ this will suppress all the spectral components not centered at $\pm f_{c}$. to yield the desired modulated signal $\frac{2}{\boldsymbol{\pi}} \boldsymbol{m}(\boldsymbol{t}) \boldsymbol{\operatorname { c o s }}\left(\boldsymbol{w}_{\boldsymbol{c}} \boldsymbol{t}\right)$ (Fig.d).

We now see the real payoff of this method. Multiplication of a signal by a square pulse train is in reality a switching operation in which the signal $m(t)$ is switched on and off periodically; it can be accomplished by simple switching elements controlled by $w(t)$.

A- Diode-Bridge Modulator

One such electronic switch driven by a sinusoid $\operatorname{Acos}\left(\boldsymbol{w}_{\boldsymbol{c}} \boldsymbol{t}\right)$ to produce the switching action. Diodes D1, D2 and D3, D4 are matched pairs. When the signal $\cos \left(w_{c} t\right)$ is of a polarity that will make terminal \mathbf{c} positive with respect to \mathbf{d}, all the diodes conduct. Because diodes D1 and D2 are matched, terminals a and b have the same potential and are effectively shorted. During the next half-cycle, terminal \mathbf{d} is positive with respect to \mathbf{c}, and all four diodes open, thus opening terminals \mathbf{a} and \mathbf{b}. The diode bridge in Fig.a, therefore, serves as a desired electronic switch, where terminals \mathbf{a} and \mathbf{b} open and close periodically with carrier frequency $\boldsymbol{f}_{\boldsymbol{c}}$ when a sinusoid $\operatorname{Acos}\left(w_{c} t\right)$ is applied across terminals \mathbf{c} and \mathbf{d}. To obtain the signal $m(t) w(t)$, we may place this electronic switch (terminals a and b) in series (Fig.b) or across (in parallel) $m(t)$, as shown in Fig.c. These modulators are known as the series-bridge diode modulator and the shunt-bridge diode modulator, respectively. This switching on and off of $m(t)$ repeats for each cycle of the carrier, resulting in the switched signal $m(t) w(t)$, which when bandpass-filtered, yields the desired modulated signal $\frac{2}{\pi} \boldsymbol{m}(\boldsymbol{t}) \boldsymbol{\operatorname { c o s }}\left(\boldsymbol{w}_{\boldsymbol{c}} \boldsymbol{t}\right)$.

(a)

(b)

(c)

B- Ring Modulator(Double Balance Modulator)

Another switching modulator, known as the ring modulator, is shown in Fig.a. During the positive half-cycles of the carrier, diodes D1 and D3 conduct, and D2 and D4 are open. Hence, terminal \boldsymbol{a} is connected to \boldsymbol{c}, and terminal \mathbf{b} is connected to \mathbf{d}. During the negative half-cycles of the carrier, diodes D1 and D3 are open, and D2 and D4 are conducting, thus connecting terminal \boldsymbol{a} to \boldsymbol{d} and terminal \boldsymbol{b} to \boldsymbol{c}. Hence, the output is proportional to $m(t)$ during the positive half-cycle and to $-m(t)$ during the negative half-cycle. In effect, $m(t)$ is multiplied by a square pulse train $w_{o}(t)$, as shown in Fig.b. The Fourier series for $w_{o}(t)$ can be found by using the signal $w(t)$ to yield $\boldsymbol{w}_{\boldsymbol{o}}(\boldsymbol{t})=\mathbf{2 w}(\boldsymbol{t}) \mathbf{- 1}$. Therefore, we can use the Fourier series of $w(t)$ to determine the Fourier series of $w_{o}(t)$ as
$w_{o}(t)=2 w(t)-1$
$w_{o}(t)=\frac{4}{\pi}\left[\cos \left(w_{c} t\right)-\frac{1}{3} \cos \left(3 w_{c} t\right)+\frac{1}{5} \cos \left(5 w_{c} t\right)-\cdots\right] \quad$ H.W
$v_{i}(t)=m(t) w_{o}(t)$
$v_{i}(t)=\frac{4}{\pi}\left[m(t) \cos \left(w_{c} t\right)-\frac{1}{3} m(t) \cos \left(3 w_{c} t\right)+\frac{1}{5} m(t) \cos \left(5 w_{c} t\right)-\cdots\right]$
After BPF then
output $=\frac{4}{\pi} m(t) \cos \left(w_{c} t\right)$

Demodulation of DSB-SC Signals

As discussed earlier, demodulation of a DSB-SC signal essentially involves multiplication by the carrier signal and is identical to modulation. At the receiver, we multiply the incoming signal by a local carrier of frequency and phase in synchronism with the incoming carrier. The product is then passed through a lowpass filter. The only difference between the modulator and the demodulator lies in the input signal and the output filter. In the modulator, message $\mathrm{m}(t)$ is the input while the multiplier output is passed through a bandpass filter tuned to w_{c}, whereas in the demodulator, the DSB-SC signal is the input while the multiplier output is passed through a low-pass filter. Therefore, all the modulators discussed earlier without multipliers can also be used as demodulators, provided the bandpass filters at the output are replaced by low-pass filters of bandwidth $\boldsymbol{f}_{\boldsymbol{m}}$. For demodulation, the receiver must generate a carrier in phase and frequency synchronism with the incoming carrier. These demodulators are synonymously called synchronous or coherent (also homodyne) demodulators
H.W: Analysis and draw the block diagram of demodulation DSB-SC 1- Nonlinear Modulator
2- Switch Modulator (A-Diode-Bridge Modulator B-Ring Modulator)

